\docType{data} \name{data-GlobalPatterns} \alias{data-GlobalPatterns} \alias{GlobalPatterns} \title{(Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)} \description{ Published in PNAS in early 2011. This work compared the microbial communities from 25 environmental samples and three known ``mock communities'' -- a total of 9 sample types -- at a depth averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in many other published studies, while also invesitigating technical issues/bias by applying the same techniques to simulated microbial communities of known composition. } \details{ abstract from research article (quoted): The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known ``mock communities'' at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution. (end quote) Many thanks to J. Gregory Caporaso for directly providing the OTU-clustered data files for inclusion in this package. } \examples{ # data(GlobalPatterns) # # Load the GlobalPatterns dataset into the workspace environment # data(GlobalPatterns) # # Look at the different values for SampleType # getVariable(GlobalPatterns, "SampleType") # ################################################################################ # # Reproduce Figure 4 from the article, but using Jaccard distance, # # and different clustering methods (UPGMA=="average" used in article) # # The default method for hclust() uses complete-linkage clustering (method="complete") # ################################################################################ # # Calculate the jaccard distance between each sample # jaccdist <- distance(GlobalPatterns, "jaccard") # plot(hclust(jaccdist, "average"), labels=getVariable(GlobalPatterns, "SampleType")) # # A different method ("complete-linkage") # plot(hclust(jaccdist), labels=getVariable(GlobalPatterns, "SampleType"), col=cols) # # In case you decide to color the tip labels # colorScale <- rainbow(length(levels(getVariable(GlobalPatterns, "SampleType")))) # cols <- colorScale[getVariable(GlobalPatterns, "SampleType")] # ################################################################################ # # Reproduce Figure 5, but in 2-D # ################################################################################ # coords <- pcoa(UniFrac(GlobalPatterns))$vectors # DF <- data.frame(sampleData(GlobalPatterns), coords) # ggplot(DF, aes(x=Axis.1, y=Axis.2, color=SampleType)) + # geom_point(size=4) + # geom_line() + # opts(title = "PCoA on unweighted UniFrac distance") # ################################################################################ # # Reproduce Figure 5 (but in 2-D and using jaccard distance / nmMDS) # ################################################################################ # # Choose number of axes for non-metric MDS # N <- 2 # # Perform non-metric multi-dimensional scaling, 3 axes (k=3) # coords <- scores(metaMDS(jaccdist, k=N)) # # Add the NMDS coordinates to the sample data.frame, DF # DF <- data.frame(sampleData(GlobalPatterns), coords) # # plot the MDS of jaccard-distances, and shade points by soil treatments # # (two axes only, 3-axes used in Fig 5) # ggplot(DF, aes(x=NMDS1, y=NMDS2, color=SampleType)) + # geom_point(size=4) + # geom_line() + # opts(title = ps("nmMDS on Jaccard distance, ", N, " axes")) # ################################################################################ # # Reproduce Figure 5 (but use Jaccard distance / PCoA) # ################################################################################ # # use principle coordinates analysis (as in article) # coords <- pcoa(jaccdist)$vectors # # Add the PCoA coordinates to the sample data.frame, DF # DF <- data.frame(sampleData(GlobalPatterns), coords) # # plot the PCoA on jaccard-distances, and shade points by soil treatments # # (First-two axes only, could show 3 as in Fig 5, if desired) # ggplot(DF, aes(x=Axis.1, y=Axis.2, color=SampleType)) + # geom_point(size=4) + # geom_line() + # opts(title = ps("PCoA on Jaccard distance, two axes")) # ################################################################################ # # Reproduce Figure 5, but using correspondence analysis # ################################################################################ # gpdca <- ordinate(GlobalPatterns, "DCA") # coords <- scores(gpdca)$sites # DF <- data.frame(sampleData(GlobalPatterns), coords) # ggplot(DF, aes(x=CA1, y=CA2, color=SampleType)) + # geom_point(size=4) + # geom_line() + # opts(title = ps("DCA on abundances, first two axes")) } \author{ Caporaso, J. G., et al. } \references{ Caporaso, J. G., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS, 108, 4516-4522. PMCID: PMC3063599 The primary article can be viewed/downloaded at: \url{http://www.pnas.org/content/108/suppl.1/4516.short} } \keyword{data}