\name{summarize} \alias{backgroundCorrectionMethods} \alias{normalizationMethods} \alias{summarizationMethods} \alias{summarize} \alias{summarize-methods} \alias{summarize,matrix-method} \alias{summarize,ff_matrix-method} \alias{backgroundCorrect} \alias{backgroundCorrect-methods} \alias{backgroundCorrect,matrix-method} \alias{backgroundCorrect,ff_matrix-method} \alias{backgroundCorrect,FeatureSet-method} \alias{normalize} \alias{normalize-methods} \alias{normalize,matrix-method} \alias{normalize,ff_matrix-method} \alias{normalize,FeatureSet-method} \alias{normalizeToTarget} \alias{normalizeToTarget-methods} \alias{normalizeToTarget,matrix-method} \alias{normalizeToTarget,ff_matrix-method} \title{ Tools for microarray preprocessing. } \description{ These are tools to preprocess microarray data. They include background correction, normalization and summarization methods. } \usage{ backgroundCorrectionMethods() normalizationMethods() summarizationMethods() backgroundCorrect(object, method=backgroundCorrectionMethods(), copy=TRUE, extra, verbose=TRUE, ...) summarize(object, probes=rownames(object), method="medianpolish", verbose=TRUE, ...) normalize(object, method=normalizationMethods(), copy=TRUE, verbose=TRUE, ...) normalizeToTarget(object, target, method="quantile", copy=TRUE, verbose=TRUE) } \arguments{ \item{object}{Object containing probe intensities to be preprocessed.} \item{method}{String determining which method to use at that preprocessing step.} \item{target}{Vector with the target distribution} \item{probes}{Character vector that identifies the name of the probes represented by the rows of \code{object}.} \item{copy}{Logical flag determining if data must be copied before processing (TRUE), or if data can be overwritten (FALSE).} \item{extra}{Extra arguments to be passed to other methods.} \item{verbose}{Logical flag for verbosity.} \item{\dots}{Arguments to be passed to methods.} } \details{ Number of rows of \code{object} must match the length of \code{probes}. } \value{ \code{backgroundCorrectionMethods} and \code{normalizationMethods} will return a character vector with the methods implemented currently. \code{backgroundCorrect}, \code{normalize} and \code{normalizeToTarget} will return a matrix with same dimensions as the input matrix. If they are applied to a FeatureSet object, the PM matrix will be used as input. The \code{summarize} method will return a matrix with \code{length(unique(probes))} rows and \code{ncol(object)} columns. } \examples{ ns <- 100 nps <- 1000 np <- 10 intensities <- matrix(rnorm(ns*nps*np, 8000, 400), nc=ns) ids <- rep(as.character(1:nps), each=np) bgCorrected <- backgroundCorrect(intensities) normalized <- normalize(bgCorrected) summarizationMethods() expression <- summarize(normalized, probes=ids) intensities[1:20, 1:3] expression[1:20, 1:3] target <- rnorm(np*nps) normalizedToTarget <- normalizeToTarget(intensities, target) if (require(oligoData) & require(pd.hg18.60mer.expr)){ ## Example of normalization with real data data(nimbleExpressionFS) boxplot(nimbleExpressionFS, main='Original') for (mtd in normalizationMethods()){ message('Normalizing with ', mtd) res <- normalize(nimbleExpressionFS, method=mtd, verbose=FALSE) boxplot(res, main=mtd) } } } \keyword{manip}