\name{basicPLM} \alias{basicPLM} \title{ Simplified interface to PLM. } \description{ Simplified interface to PLM. } \usage{ basicPLM(pmMat, pnVec, normalize = TRUE, background = TRUE, transfo = log2, method = c('plm', 'plmr', 'plmrr', 'plmrc'), verbose = TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{pmMat}{Matrix of intensities to be processed.} \item{pnVec}{Probeset names} \item{normalize}{Logical flag: normalize?} \item{background}{Logical flag: background adjustment?} \item{transfo}{function: function to be used for data transformation prior to summarization.} \item{method}{Name of the method to be used for normalization. 'plm' is the usual PLM model; 'plmr' is the (row and column) robust version of PLM; 'plmrr' is the row-robust version of PLM; 'plmrc' is the column-robust version of PLM.} \item{verbose}{Logical flag: verbose.} } \value{ A list with the following components: \item{Estimates}{A (length(pnVec) x ncol(pmMat)) matrix with probeset summaries.} \item{StdErrors}{A (length(pnVec) x ncol(pmMat)) matrix with standard errors of 'Estimates'.} \item{Residuals}{A (nrow(pmMat) x ncol(pmMat)) matrix of residuals.} } \author{ Benilton Carvalho } \note{ Currently, only RMA-bg-correction and quantile normalization are allowed. } \seealso{ \code{\link[preprocessCore]{rcModelPLM}}, \code{\link[preprocessCore]{rcModelPLMr}}, \code{\link[preprocessCore]{rcModelPLMrr}}, \code{\link[preprocessCore]{rcModelPLMrc}}, \code{\link{basicRMA}} } \examples{ set.seed(1) pms <- 2^matrix(rnorm(1000), nc=20) colnames(pms) <- paste("sample", 1:20, sep="") pns <- rep(letters[1:10], each=5) res <- basicPLM(pms, pns, TRUE, TRUE) res[['Estimates']][1:4, 1:3] res[['StdErrors']][1:4, 1:3] res[['Residuals']][1:20, 1:3] } \keyword{manip}