\name{transitive.closure} \alias{transitive.closure} \title{Computes the transitive closure of a directed graph} \description{ Computes the transitive closure of a graph. Introduces a direct edge whenever there is a path between two nodes in a digraph. } \usage{ transitive.closure(g, mat=FALSE, loops=TRUE) } \arguments{ \item{g}{graphNEL object or adjacency matrix.} \item{mat}{convert result to adjacency matrix.} \item{loops}{Add loops from each node to itself?} } \details{ This function calculates the transitive closure of a given graph. We use the matrix exponential to find the transitive closure. } \value{ returns a graphNEL object or adjacency matrix } \author{Florian Markowetz} \seealso{\code{\link{transitive.reduction}}} \examples{ V <- LETTERS[1:3] edL <- list(A=list(edges="B"),B=list(edges="C"),C=list(edges=NULL)) g <- new("graphNEL",nodes=V,edgeL=edL,edgemode="directed") gc <- transitive.closure(g,loops=FALSE) par(mfrow=c(1,2)) plot(g,main="NOT transitively closed") plot(gc,main="transitively closed") } \keyword{graphs}