\name{prune.graph} \alias{prune.graph} \title{Prunes spurious edges in a phenotypic hierarchy} \description{A heuristic to prune spurious edges in a pehnotypic hierarchy} \usage{ prune.graph(g,cutIN=NULL,cutOUT=NULL,quant=.95,verbose=TRUE) } \arguments{ \item{g}{an adjacency matrix or a 'graphNEL' object} \item{cutIN}{minimum number of missing in-edges required to cut all in-edges. Default} \item{cutOUT}{minimum number of missing out-edges required to cut all out-edges} \item{quant}{if 'cutIN' or 'cutOUT' are not assigned, a quantile 'quant' of the distribution of missing in- or out-edges for all nodes is used} \item{verbose}{Default: TRUE} } \details{ \code{prune.graph} provides a heuristic approach to prune surious edges. \code{prune.graph} compares the input graph to its transitive closure, and counts for each node how many incoming and outgoing edges are missing. If the number is bigger than a user-defined cutoff, all incoming (outgoing) edges are removed. } \value{ \item{graph}{the pruned phenotypic hierarchy (a 'graphNEL' object)} \item{removed}{number of removed edges} \item{missing.in}{number of missing in-edges for each node} \item{missing.out}{number of missing out-edges for each node} } \author{Florian Markowetz} \examples{ # a transitively closed core with two spurious edges g <- matrix(0,5,5) g[1,2] <- 1 g[2,c(3,4)] <- 1 g[3,4] <- 1 g[4,5] <- 1 dimnames(g) <- list(LETTERS[1:5],LETTERS[1:5]) g <- as(g,"graphNEL") # prune graph gP <- prune.graph(g) # plot par(mfrow=c(1,2)) plot(g,main="two spurious edges") plot(gP$graph,main="pruned") } \keyword{graphs}