\name{build.mim} \alias{build.mim} \title{Build Mutual Information Matrix} \usage{build.mim(dataset, estimator = "spearman", disc = "none", nbins = sqrt(NROW(dataset)))} \arguments{ \item{dataset}{data.frame containing gene expression data or any dataset where columns contain variables/features and rows contain outcomes/samples.} \item{estimator}{The name of the entropy estimator to be used. The package implements four estimators for discrete data: "mi.empirical", "mi.mm", "mi.shrink", "mi.sg" and three estimators based on correlation (can be used with continuous data): "pearson","spearman","kendall"(default:"spearman") - see details. } \item{disc}{ The name of the discretization method to be used with one of the discrete estimators: "none", "equalfreq", "equalwidth" or "globalequalwidth" (default : "none") - see infotheo package.} \item{nbins}{ Integer specifying the number of bins to be used for the discretization if disc is different from "none". By default the number of bins is set to \eqn{\sqrt{m}}{sqrt(m)} where m is the number of samples.} } \value{ \code{build.mim} returns the mutual information matrix.} \description{ \code{build.mim} takes the dataset as input and computes the mutual information beetween all pair of variables according to the mutual inforamtion estimator \code{estimator}. The results are saved in the mutual information matrix (MIM), a square matrix whose (i,j) element is the mutual information between variables \eqn{X_i}{Xi} and \eqn{X_j}{Xj}. } \details{ \itemize{ \item "mi.empirical" : This estimator computes the entropy of the empirical probability distribution. \item "mi.mm" : This is the Miller-Madow asymptotic bias corrected empirical estimator. \item "mi.shrink" : This is a shrinkage estimate of the entropy of a Dirichlet probability distribution. \item "mi.sg" : This is the Schurmann-Grassberger estimate of the entropy of a Dirichlet probability distribution. \item "pearson" : This computes mutual information for normally distributed variable. \item "spearman" : This computes mutual information for normally distributed variable using Spearman's correlation instead of Pearson's correlation. \item "kendall" : This computes mutual information for normally distributed variable using Kendall's correlation instead of Pearson's correlation. } } \author{ Patrick E. Meyer, Frederic Lafitte, Gianluca Bontempi } \references{ Patrick E. Meyer, Frederic Lafitte, and Gianluca Bontempi. minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information. BMC Bioinformatics, Vol 9, 2008. J. Beirlant, E. J. Dudewica, L. Gyofi, and E. van der Meulen. Nonparametric entropy estimation : An overview. Journal of Statistics, 1997. Jean Hausser. Improving entropy estimation and the inference of genetic regulatory networks. Master thesis of the National Institute of Applied Sciences of Lyon, 2006. } \seealso{\code{\link{clr}}, \code{\link{aracne}}, \code{\link{mrnet}}, \code{\link{mrnetb}}} \examples{ data(syn.data) mim <- build.mim(syn.data,estimator="spearman") } \keyword{misc}