\name{fit distributions} \alias{fitCauchy} \alias{fitTd} \alias{fitGumbel} \alias{fitNorm} \alias{fitWeightedNorm} \alias{fitNormalCauchyMixture} \alias{fitGaussianMixture} \title{Fit weighted and unweighted Cauchy and Normal distributions} \description{ Functions to fit the probability density functions on ratio distribution. } \usage{ fitCauchy(x) fitNorm(x, portion = 0.75) fitWeightedNorm(x, weights) fitNormalCauchyMixture(x) fitGaussianMixture(x, n = 500) fitGumbel(x) fitTd(x) } \arguments{ \item{x}{Ratios} \item{weights}{Weights} \item{portion}{Central portion of data to take for computation} \item{n}{number of sampling steps} } \value{ \code{\link[distr]{Cauchy}},\code{\link[distr]{Norm}} } \author{ Florian P Breitwieser, Jacques Colinge. } \seealso{ \link{proteinRatios} } \examples{ library(distr) data(ibspiked_set1) data(noise.model.hcd) # calculate protein ratios of Trypsin and CERU_HUMAN. Note: this is only # for illustration purposes. For estimation of sample variability, data # from all protein should be used pr <- proteinRatios(ibspiked_set1,noise.model=noise.model.hcd, cl=as.character(c(1,1,2,2)),method="intraclass",protein=c("136429","P00450")) # fit a Cauchy distribution ratiodistr <- fitCauchy(pr$lratio) plot(ratiodistr) }