\name{cmdsFit} \alias{cmdsFit} \alias{cmdsFit-methods} \alias{cmdsFit,matrix-method} \title{Classical Multi-Dimensional Scaling for a distance matrix} \description{ \code{cmdsFit} obtains coordinates in a \code{k} dimensional space which best approximate the given distances between objects. } \section{Methods}{ \describe{ \item{\code{signature(d = "matrix")}}{ Use Classical Multi-Dimensional Scaling to represent points in a k-dimensional space.} }} \usage{ cmdsFit(d, k=2, type='classic', add=FALSE, cor.method='pearson') } \arguments{ \item{d}{ Distances between objects} \item{k}{ Dimensionality of the reconstructed space, typically set to 2 or 3.} \item{type}{ Set to \code{"classic"} to perform classical MDS (uses function \code{cmdscale} from package \code{stats}). Set to \code{"isoMDS"} to use Kruskal's non-metric MDS (uses function \code{isoMDS} from package \code{MASS}). } \item{add}{ Logical indicating if an additive constant c* should be computed, and added to the non-diagonal dissimilarities such that all n-1 eigenvalues are non-negative in \code{cmdscale} } \item{cor.method}{ A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman", can be abbreviated.}} \value{ The function returns a \code{cmdsFit} object. See help("cmdsFit-class") for details. } \examples{ ### Not run #d <- matrix(c(0,5,10,5,0,15,10,15,0),byrow=TRUE,ncol=3) #cmdsFit(d,add=TRUE) } \keyword{ graphs }