\name{progressiveAlignment-class} \alias{progressiveAlignment-class} \alias{progressiveAlignment-show} \alias{progressiveAlignment} \alias{show,progressiveAlignment-method} \title{Data Structure for progressive alignment of many GCMS samples} \description{Performs a progressive peak alignment (clustalw style) of multiple GCMS peak lists} \usage{progressiveAlignment(pD,cA,D=1000,gap=.5,verbose=TRUE,usePeaks=TRUE,df=30,compress=TRUE)} \arguments{ \item{pD}{a \code{peaksDataset} object} \item{cA}{a \code{clusterAlignment} object} \item{D}{retention time penalty} \item{gap}{gap parameter} \item{verbose}{logical, whether to print information} \item{usePeaks}{logical, whether to use peaks (if \code{TRUE}) or the full 2D profile alignment (if \code{FALSE})} \item{df}{distance from diagonal to calculate similarity} \item{compress}{logical, whether to store the similarity matrices in sparse form} } \details{ The progressive peak alignment we implemented here for multiple GCMS peak lists is analogous to how \code{clustalw} takes a set of pairwise sequence alignments and progressively builds a multiple alignment. More details can be found in the reference below. } \value{ \code{progressiveAlignment} object } \author{Mark Robinson} \references{ Mark D Robinson (2008). Methods for the analysis of gas chromatography - mass spectrometry data \emph{PhD dissertation} University of Melbourne. } \seealso{ \code{\link{peaksDataset}}, \code{\link{multipleAlignment}} } \examples{ require(gcspikelite) # paths and files gcmsPath<-paste(.find.package("gcspikelite"),"data",sep="/") cdfFiles<-dir(gcmsPath,"CDF",full=TRUE) eluFiles<-dir(gcmsPath,"ELU",full=TRUE) # read data, peak detection results pd<-peaksDataset(cdfFiles[1:2],mz=seq(50,550),rtrange=c(7.5,8.5)) pd<-addAMDISPeaks(pd,eluFiles[1:2]) ca<-clusterAlignment(pd, gap = .5,D=.05,df=30) pa<-progressiveAlignment(pd, ca, gap = .6, D=.1,df=30) } \keyword{classes}