\name{estimateMode} \alias{estimateMode} \title{Estimation of the modes of the rows of a matrix} \description{ \code{estimateMode}: \R implementation of \code{estimateMode}. } \usage{ estimateMode(X,maxiter=50,tol=0.001,alpha=0.1,a1=4.0,G1=FALSE) } \arguments{ \item{X}{matrix of which the modes of the rows are estimated.} \item{maxiter}{maximal number of iterations; default = 50.} \item{tol}{tolerance for stopping; default = 0.001.} \item{alpha}{learning rate; default = 0.1.} \item{a1}{parameter of the width of the given distribution; default = 4.} \item{G1}{kind of distribution, \code{TRUE}: G1, \code{FALSE}: G2; default = \code{FALSE}.} } \details{ The mode is estimated by contrast functions G1 \deqn{(1/a_1) * \ln (\cosh (a1*x))} or G2 \deqn{ - (1/a_1)*\exp(-1/2 * x*x)} The estimation is performed by gradient descent initialized by the median. Implementation in \R. } \value{ \item{u}{the vector of estimated modes.} \item{xu}{\eqn{X-u} the mode centered data.} } \seealso{ \code{\link{fabia}}, \code{\link{fabias}}, \code{\link{fabiap}}, \code{\link{fabi}}, \code{\link{fabiasp}}, \code{\link{mfsc}}, \code{\link{nmfdiv}}, \code{\link{nmfeu}}, \code{\link{nmfsc}}, \code{\link{plot}}, \code{\link{extractPlot}}, \code{\link{extractBic}}, \code{\link{plotBicluster}}, \code{\link{Factorization}}, \code{\link{projFuncPos}}, \code{\link{projFunc}}, \code{\link{estimateMode}}, \code{\link{makeFabiaData}}, \code{\link{makeFabiaDataBlocks}}, \code{\link{makeFabiaDataPos}}, \code{\link{makeFabiaDataBlocksPos}}, \code{\link{matrixImagePlot}}, \code{\link{summary}}, \code{\link{show}}, \code{\link{showSelected}}, \code{\link{fabiaDemo}}, \code{\link{fabiaVersion}} } \author{Sepp Hochreiter} \examples{ #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] modes <- estimateMode(X) modes$u - apply(X, 1, median) } \references{ A. Hyvaerinen, \sQuote{Fast and Robust Fixed-Point Algorithms for Independent Component Analysis}, IEEE Transactions on Neural Networks 10(3):626-634, 1999. } \keyword{methods} \concept{mode estimation}