\name{expressionQCPipeline} \alias{expressionQCPipeline} \alias{combinedControlPlot} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Flexible bead-level QC pipeline } \description{ Function to produce various QC plots and HTML summary pages for bead-level data. } \usage{ expressionQCPipeline(BLData, transFun = logGreenChannelTransform, qcDir = "QC", plotType = ".jpeg", horizontal = TRUE, controlProfile = NULL, overWrite=FALSE,nSegments=9,outlierFun=illuminaOutlierMethod,tagsToDetect = list(housekeeping = "housekeeping", Biotin = "biotin", Hybridisation = "cy3_hyb"),zlim=c(5,7),positiveControlTags = c("housekeeping", "biotin"), hybridisationTags = c("cy3_hyb"), negativeTag= "negative", boxplotFun = logGreenChannelTransform, imageplotFun = logGreenChannelTransform) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{BLData}{ a \code{beadLevelData} object } \item{transFun}{ what transformation function to apply } \item{qcDir}{ a directory to write output to } \item{plotType}{ desired file extension for plots (jpeg or png) } \item{horizontal}{ if TRUE imageplots and outlier plots are produced with longest edge on x axis } \item{controlProfile}{ a data frame defining all control types. not required if annotation information is stored in the bead-level object } \item{overWrite}{ if FALSE any plots that exist in the directory will not be recreated } \item{nSegments}{ how many segments each section is divided into } \item{outlierFun}{ a function to removed outliers } \item{tagsToDetect}{ which control types to used in the detection metrics } \item{zlim}{ the range of the imageplots } \item{boxplotFun}{ what transformation function to be used in boxplots } \item{imageplotFun}{ what transformation function to be used for imageplots } \item{positiveControlTags}{ character strings defining which positive controls to plot } \item{hybridisationTags}{ additional control types to be plotted } \item{negativeTag}{ character string to identify which control type in the control profile corresponds to negative controls } \item{\dots}{ other plot arguments } } \details{ This function is a convient way of automatically generating QC plots for each section within a \code{beadLevelData} object. The following plots are produced for each section. i) scatter plots of all bead observation of the positive controls. See \code{\link{poscontPlot}}. ii) Further scatter plots of other controls of interest using \code{\link{poscontPlot}}. iii) imageplot (\code{\link{imageplot}}) of section data after applying transformation function iv) plot of outlier locations using specified outlier function. A HTML page displaying all the plots is produced. After plots have been produced for each section, \code{\link{makeQCTable}} is run to make a table of mean and standard deviations for the defined control types, followed by the results of \code{\link{calculateOutlierStats}} and \code{\link{controlProbeDetection}} for each section and written to a HTML page in the requested directory. The function should be able to run automatically for expression data that has its annotation stored using \code{\link{setAnnotation}} or using \code{\link{readIllumina}}. Otherwise the \code{controlProfile} data frame can be used to define the control types on the array and their associated ArrayAddressIDs. Similarly, the function assumes single-channel data but a transformation function can be passed. } \author{ Mark Dunning } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ \code{\link{poscontPlot}} \code{\link{imageplot}} \code{\link{outlierplot}} \code{\link{controlProbeDetection}} } \examples{ if(require(beadarrayExampleData)){ \dontrun{ data(exampleBLData) expressionQCPipeline(exampleBLData, horizontal=T) } } }