\name{findSynexprs} \alias{findSynexprs} \title{ This function finds the synexpression groups present within a core attractor pathway module. } \description{ This function takes the modules that were inferred from the GSEA step using (\code{findAttractors}) and finds a set of transcriptionally coherent set of genes associated with a particular core attractor pathway, i.e. the synexpression groups. } \usage{ findSynexprs(pathwayIds, myAttractorModuleSet, removeGenes = NULL, min.clustersize = 5, ...) } \arguments{ \item{pathwayIds}{ either a single character string or \code{vector} of character strings denoting the KEGG IDs of the pathway modules to be analyzed. } \item{myAttractorModuleSet}{ \code{AttractorModuleSet} object, output of the \code{findAttractors} step. } \item{removeGenes}{ \code{vector} of gene names that specify those genes who demonstrate little variability across the different celltypes and thus should be removed from downstream analysis. } \item{min.clustersize}{ \code{integer} specifying the minimum number of genes that must be present in clusters that are inferred. } \item{\dots}{ additional arguments. } } \details{ This function performs a hierarichical cluster analysis of the genes in a core attractor pathway module, and uses an informativeness metric to determine the number of optimal clusters (syenxpression groups) that describe the data. } \value{ If a single KEGG ID is specified in \code{pwayIds}, then a \code{SynExpressionSet} object is returned. If a multiple KEGG IDs are specified, then an environment object is returned where the keys are labeled "pwayKEGGIDsynexprs" (e.g. for MAPK KEGGID = 04010, the key is pway04010synexprs). The value associated with each key is a \code{\link{SynExpressionSet}} object. } \author{ Jessica Mar } \references{ Mar, J., C. Wells, and J. Quackenbush, Identifying the Gene Expression Modules that Represent the Drivers of Kauffman's Attractor Landscape. to appear, 2010. } \examples{ data(subset.loring.eset) attractor.states <- findAttractors(subset.loring.eset, "celltype", nperm=10, annotation="illuminaHumanv1.db") remove.these.genes <- removeFlatGenes(subset.loring.eset, "celltype", contrasts=NULL, limma.cutoff=0.05) mapk.syn <- findSynexprs("04010", attractor.states, remove.these.genes) top5.syn <- findSynexprs(attractor.states@rankedPathways[1:5,1], attractor.states, removeGenes=remove.these.genes) } \keyword{methods}