\name{ROCcurve} \alias{ROCcurve} \title{Receiver operating curve} \description{ A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold is varied. Equivalently, one can also plot sensitivity versus (1 - specificity). } \usage{ ROCcurve(object, groups, probesetId = NULL, geneSymbol = NULL, main = NULL, probe2gene = TRUE, ...) } \arguments{ \item{object}{ExpressionSet object for the experiment} \item{groups}{String containing the name of the grouping variable. This should be a the name of a column in the \code{pData} of the \code{expressionSet} object.} \item{probesetId}{The probeset ID. These should be stored in the \code{featureNames} of the \code{expressionSet} object.} \item{geneSymbol}{The gene symbol. These should be stored in the column \code{`Gene Symbol`} in the \code{featureData} of the \code{expressionSet} object.} \item{main}{Main title on top of the graph} \item{probe2gene}{Boolean indicating whether the probeset should be translated to a gene symbol (used for the default title of the plot)} \item{\dots}{Possibility to add extra plot options. See \code{\link{par}}} } \references{Some explanation about ROC can be found on \url{http://en.wikipedia.org/wiki/ROC_curve} and \url{http://www.anaesthetist.com/mnm/stats/roc/Findex.htm}. The latter has at the bottom a nice interactive tool to scroll the cut-off and to see how it affects the FP/TP table and the ROC curve. } \author{Willem Talloen} \examples{ # simulated data set esSim <- simulateData() ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE) # ALL data set if (require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) ROCres <- ROCcurve(gene = "ABL1", object = ALL, groups = "BTtype") } }