\name{plotErrorsRepeatedOneLayerCV-methods} \docType{methods} \alias{plotErrorsRepeatedOneLayerCV} \alias{plotErrorsRepeatedOneLayerCV-methods} \alias{plotErrorsRepeatedOneLayerCV,assessment-method} \title{ plotErrorsRepeatedOneLayerCV Method to plot the estimated error rates in each repeat of a one-layer Cross-validation} \description{ This method creates a plot that represent the summary estimated error rate and the cross-validated error rate in each repeat of the one-layer cross-validation of the assessment at stake. The plot represents the summary estimate of the error rate (averaged over the repeats) and the cross-validated error rate obtained in each repeat versus the size of gene subsets (for SVM-RFE) or the threshold values (for NSC). } \section{Methods}{ \describe{ \item{object = "assessment"}{The method is only applicable on objects of class assessment.} }} \seealso{ \code{\link{plotErrorsFoldTwoLayerCV-methods}}, \code{\link{plotErrorsSummaryOneLayerCV-methods}} } \examples{ data('vV70genesDataset') expeOfInterest <- new("assessment", dataset=vV70genes, noFolds1stLayer=3, noFolds2ndLayer=2, classifierName="svm", typeFoldCreation="original", svmKernel="linear", noOfRepeat=10, featureSelectionOptions=new("geneSubsets", optionValues=c(1,2,3,4,5,6))) expeOfInterest <- runOneLayerExtCV(expeOfInterest) plotErrorsRepeatedOneLayerCV(expeOfInterest) } \keyword{methods}