\name{getFinalClassifier-methods} \docType{methods} \alias{getFinalClassifier,assessment-method} \alias{getFinalClassifier-methods} \alias{getFinalClassifier} \title{getFinalClassifier Method to access the attributes of a finalClassifier from an assessment} \description{ This method provides an easy interface to access the attributes of the object of class finalClassifier related to a particular assessment, directly from this object assessment. The argument \code{topic} specifies which part of the finalClassifier is of interest. } \section{Methods}{ \describe{ \item{object = "assessment"}{The method is only applicable on objects of class assessment.} }} \arguments{ \item{object}{\code{Object of class assessment}. Object assessment of interest} \item{topic}{\code{character}. Optional argument that specifies which attribute of the finalClassifier is requested, the possible values are \code{genesFromBestToWorst} (slot \code{genesFromBestToWorst} of the finalClassifier), \code{models} (slot \code{models} of the finalClassifier), if the \code{topic} is missing then the whole finalClassifier object is returned.} } \value{ The value returned by the method changes accordingly to the \code{topic} argument. If \code{topic} is missing \code{object of class finalClassifier} the finalClassifier corresponding to the assessment of interest If \code{topic} is \code{"genesFromBestToWorst"} \code{numeric} corresponding to the \code{genesFromBestToWorst} of the finalClassifier If \code{topic} is \code{"models"} \code{numeric} corresponding to the \code{models} of the finalClassifier } \author{ Camille Maumet } \seealso{ \code{\linkS4class{finalClassifier}}, \code{\linkS4class{assessment}} } \examples{ #dataPath <- file.path("C:", "Documents and Settings", "c.maumet", "My Documents", "Programmation", "Sources", "SVN", "R package", "data") #aDataset <- new("dataset", dataId="vantVeer_70", dataPath=dataPath) #aDataset <- loadData(aDataset) mySubsets <- new("geneSubsets", optionValues=c(1,2,3,4,5,6)) data('vV70genesDataset') # assessment with RFE and SVM expeOfInterest <- new("assessment", dataset=vV70genes, noFolds1stLayer=10, noFolds2ndLayer=9, classifierName="svm", typeFoldCreation="original", svmKernel="linear", noOfRepeat=2, featureSelectionOptions=mySubsets) expeOfInterest <- findFinalClassifier(expeOfInterest) # Return the whole object of class finalClassifier getFinalClassifier(expeOfInterest) getFinalClassifier(expeOfInterest, 'genesFromBestToWorst') getFinalClassifier(expeOfInterest, 'models') # assessment with NSC expeOfInterest <- new("assessment", dataset=vV70genes, noFolds1stLayer=10, noFolds2ndLayer=9, featureSelectionMethod='nsc', classifierName="nsc", typeFoldCreation="original", svmKernel="linear", noOfRepeat=2, featureSelectionOptions=new("thresholds")) expeOfInterest <- findFinalClassifier(expeOfInterest) # Return the whole object of class finalClassifier getFinalClassifier(expeOfInterest) getFinalClassifier(expeOfInterest, 'genesFromBestToWorst') getFinalClassifier(expeOfInterest, 'models') } \keyword{methods}