\name{rpa.plot} \Rdversion{1.1} \alias{rpa.plot} \title{Plot RPA results and probe-level data for a specified probeset.} \description{Plots the preprocessed probe-level observations, estimated probeset-level signal, and probe-specific variances. It is also possible to highlight individual probes and external summary measures.} \usage{rpa.plot(dat, rpa.fit.object = NULL, toydata.object = NULL, highlight.probes = NULL, pcol = "darkgrey", mucol = "black", ecol = "red", cex.lab = 1.5, cex.axis = 1, cex.main = 1, cex.names = 1, external.signal = NULL, main = "", plots = "all", ...) } \arguments{ \item{dat}{ Original data: probes x samples. } \item{rpa.fit.object }{An instance of the 'rpa.fit' class.} \item{toydata.object }{Optional. Output from sample.probeset toydata generator function. Can be used to compare (toy)data with known ground truth to RPA estimates from rpa.fit.object.} \item{highlight.probes }{Optionally highlight some of the probes (with dashed line)} \item{pcol }{Color for probe signal visualization.} \item{mucol }{Color for summary estimate.} \item{ecol }{Color for external signal.} \item{cex.lab, cex.axis, cex.main, cex.names}{Font size adjustment parameters.} \item{external.signal }{Plot external signal on the probeset. For instance, an alternative summary estimate from another preprocessing methods} \item{main}{Title text.} \item{plots}{"all": plot data and summary, noise and affinity "data": plot data and summary} \item{...}{Other parameters to pass for plot function.} } \value{Used for its side-effects. Returns probes x samples matrix of probe-level data plotted on the image.} \references{Probabilistic Analysis of Probe Reliability in Differential Gene Expression Studies with Short Oligonucleotide Arrays. Lahti et al., TCBB/IEEE. See http://www.cis.hut.fi/projects/mi/software/RPA/ } \author{Leo Lahti \email{leo.lahti@iki.fi}} \seealso{RPA.pointestimate} \examples{ # Not run: ## Load example data set #require(affydata) #data(Dilution) ## Compute RPA for specific probesets only #set <- "1000_at" #rpa.results <- RPA.pointestimate(Dilution, set) ## Visualize the results for one of the probe sets #rpa.plot(set, rpa.results) } \keyword{ methods }