\name{outlierFunctions} \alias{outlierFunctions} \alias{proportion.outliers.robust} \alias{proportion.outliers.mle} \alias{qoutlier} \alias{outlier.norm} \alias{outlier.t} \alias{outlier.cutoff} \title{outliers detection functions} \description{ Distribution based outlier detection functions. } \usage{ proportion.outliers.robust(x, alpha = 0.01,isUpper=TRUE,isLower=TRUE) proportion.outliers.mle(x, alpha = 0.01,isUpper=TRUE,isLower=TRUE) qoutlier(x, alpha = 1.5,isUpper=TRUE,isLower=TRUE,plot=FALSE,...) outlier.norm(x,alpha = 0.01,z.cutoff=NULL,isUpper=TRUE,isLower=TRUE,plot=FALSE) outlier.t(x,alpha = 0.01,z.cutoff=NULL,isUpper=TRUE,isLower=TRUE,plot=FALSE) outlier.cutoff(x,lBound=NULL,uBound=NULL) } \arguments{ \item{x}{An integer/numeric vector used as the input} \item{alpha,z.cutoff}{alpha is the percentage of the standard deviation from the center of the data. z.cutoff is the standardized z-score value. They are used as the distribution based thresholds. } \item{lBound,uBound}{Numeric scalars used as cutoff threshold for either lower limit or upper limit} \item{isUpper,isLower}{logical scalars indicating whether the outliers are checked at upper or lower side of the distribution.} \item{plot}{logical scalar indicating whether to visualize the outlier detection results.} \item{...}{ other arguments to be passed to qoutlier function,currently it is ignored.} } \details{ qoutlier is IQR based outlier detection. outlier.norm is based on normal distribution using Huber M-estimator of location with MAD scale outlier.t is based on t-distribution. outlier.cutoff is a simple cutoff-based outlier detection. These different outlier detection functions are used together with qaCheck method to perform outlier checks. } \value{ a logical vector with the same length of input vector,indicating whether each entry of the input is a outlier. } \author{ Mike Jiang,Greg Finak Maintainer: Mike Jiang } \seealso{ \code{\link{qaCheck}},\code{\link[QUALIFIER:qaReport]{qaReport}} } \keyword{functions}