\name{cma.scores} \alias{cma.scores} \title{Cancer Mutation Prevalence Analysis Scores} \description{ Computes Gene-specific Scores for Cancer Mutation Prevalence Analysis. } \usage{ cma.scores(cma.data, passenger.rates = t(data.frame(0.55*rep(1.0e-6,25))), number.genes, compute.poisson.BF=FALSE, compute.binomial.posterior=FALSE, allow.separate.rates = TRUE, filter.above=0, filter.below=0, filter.threshold=0, filter.mutations=0, aa=1e-10, bb=1e-10, priorH0=1-300/13020, prior.a0=100, prior.a1=5, prior.fold=10)} \arguments{ \item{cma.data}{Data frame with mutation information broken down by gene, phase and mutation type. See \code{WoodMutationsBreast} for an example. } \item{passenger.rates}{Data frame of passenger mutation rates per nucleotide, by type, or "context". Columns denote types and must be in the same order as the first 25 columns in cma.data objects. If two rows are present, they must have row names "Discovery" and "Validation"} \item{number.genes}{The total number of genes analyzed, including those for whom no mutation were found.} \item{compute.poisson.BF}{If TRUE, computes Bayes Factors (BF) using a Poisson model for mutation counts and a gamma priors on rates.} \item{compute.binomial.posterior}{If TRUE, computes the posterior probability that a gene's mutation rates above the specified passenger rates using a binomial model.} \item{allow.separate.rates}{If TRUE, allows for use separate rates for discovery and validation screens.} \item{filter.threshold}{This and the following three input control filtering of genes, allowing to exclude genes from analysis, by size and number of mutations. Different criteria can be set above and below this threshold. The threshold is a gene size in base pairs.} \item{filter.above}{Minimum number of mutations per Mb, applied to genes of size greater than \code{threshold.size}.} \item{filter.below}{Minimum number of mutations per Mb, applied to genes of size lower than \code{threshold.size}.} \item{filter.mutations}{Only consider genes whose total number of mutations is greater than or equal to \code{filter.mutations}.} \item{aa}{Hyperparameter of beta prior used in compute.binomial.posterior.} \item{bb}{Hyperparameter of beta prior used in compute.binomial.posterior} \item{priorH0}{Prior probability of the null hypothesis, used to convert the BF in compute.poisson.BF to a posterior probability} \item{prior.a0}{Shape hyperparameter of gamma prior on passenger rates used in compute.poisson.BF} \item{prior.a1}{Shape hyperparameter of gamma prior on non-passenger rates used in compute.poisson.BF} \item{prior.fold}{Hyperparameter of gamma prior on non-passenger rates used compute.poisson.BF. The mean of the gamma is set so that the ratio of the mean to the passenger rate is the specified \code{prior.fold} in each type.} } \details{ The scores computed by this function are relevant for two stage experiments like the one in the Sjoeblom article. In this design genes are sequenced in a first "discovery" sample. Genes in which mutations are found are also sequenced in a subsequent "validation" screen. The goal of this tool is to facilitate reanalysis of the Sjoeblom dataset. Application to other projects requires a detailed understanding of the Sjoeblom project. } \value{ A data frame giving gene-by-gene values for each score. The columns in this data frame are: \item{CaMP}{The CaMP score of Sjoeblom and colleagues.} \item{neglogPg}{The negative log10 of Pg, where Pg represents the probability that a gene has its exact observed mutation profile under the null, i.e. assuming the given passenger rates.} \item{logLRT}{The log10 of the likelihood ratio test (LRT).} \item{logitBinomialPosteriorDriver}{logit of the posterior probability that a gene's mutation rates above the specified passenger rates using a binomial model} \item{PoissonlogBF}{The log10 of the Bayes Factor (BF) using a Poisson-Gamma model.} \item{PoissonPosterior}{The posterior probability that a given gene is a driver, using a Poisson-Gamma model.} \item{Poissonlmlik0}{Marginal likelihood under the null hypothesis in the Poisson-Gamma model} \item{Poissonlmlik1}{Marginal likelihood under the alternative hypothesis in the Poisson-Gamma model} } \references{ Parmigiani G, Lin J, Boca S, Sjoeblom T, Kinzler WK, Velculescu VE, Vogelstein B. Statistical methods for the analysis of cancer genome sequencing data. \url{http://www.bepress.com/jhubiostat/paper126/} Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. \emph{Science.} DOI: 10.1126/science.1164382 Sjoeblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber T, Mandelker D, Leary R, Ptak J, Silliman N, et al. The consensus coding sequences of breast and colorectal cancers. \emph{Science.} DOI: 10.1126/science.1133427 Wood LD, Parsons DW, Jones S, Lin J, Sjoeblom, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. The Genomic Landscapes of Human Breast and Colorectal Cancer. \emph{Science.} DOI: 10.1126/science.1145720 } \author{Giovanni Parmigiani, Simina M. Boca} \seealso{\code{MutationsBrain}, \code{GeneSizes08}, \code{do.gene.set.analysis}} \examples{ \dontrun{ data(Parsons) ScoresBrain <- cma.scores(cma.data=MutationsBrain, number.genes=nrow(GeneSizes08)) } } \keyword{htest}