\name{NWA-class} \alias{NWA} \alias{NWA-class} \docType{class} \title{ An S4 class for NetWork Analysis on high-throughput screens } \description{ This class includes a series of methods to do network analysis for high-throughput screens. } \section{Objects from the Class}{ Objects of class \code{NWA} can be created from \code{ new("NWA", pvalues, phenotypes=NULL, interactome=NULL)} (see the examples below) } \section{Slots}{ \describe{ \item{\code{pvalues}:}{ a numeric vector of p-values. } \item{\code{phenotypes}:}{ a numeric or integer vector of phenotypes. } \item{\code{interactome}:}{ an object of class \code{graphNEL}. } \item{\code{fdr}:}{ one parameter for BioNet to score nodes in the interactome. } \item{\code{result}:}{ a list consisting of subnetwork module identified by BioNet and a vector of labels for nodes of the subnetwork module. } \item{\code{summary}:}{ a list of summary information for \code{p-values}, \code{phenotypes}, \code{interactome} and \code{result}. } \item{\code{preprocessed}:}{ a logical value specifying whether or not input data has been preprocessed. } } } \section{Methods}{ An overview of methods with class-specific functionality: More detailed introduction can be found in help for each specific function. \describe{ \item{\code{preprocess}}{ do preprocessing for the input vector of p-values and the vector of phenotypes including: a) removing NAs in \code{p-values} and \code{phenotypes}; b) invoking function \code{duplicateRemover} to process duplicated phenotypes and p-values (see \code{duplicateRemover} for more details); c) invoking function \code{annotationConvertor} to convert annotations; } \item{\code{analyze}}{ invoke function \code{networkAnalysis} to identify enriched sub- networks based on input parameter list \code{para}. } \item{\code{summarize}}{ print summary information about \code{p-values}, \code{phenotypes}, \code{interactome} and \code{result}. } \item{\code{interactome}}{ build an interactome for the network analysis. } \item{\code{viewSubNet}}{ plot a figure of identified subnetwork. } \item{\code{plotSubNet}}{ plot and save a figure of identified subnetwork. } \item{\code{report}}{ generate html reports. } } } \author{Xin Wang \email{xw264@cam.ac.uk}} \seealso{ \code{\link[HTSanalyzeR:preprocess]{preprocess}} \code{\link[HTSanalyzeR:analyze]{analyze}} \code{\link[HTSanalyzeR:summarize]{summarize}} \code{\link[HTSanalyzeR:interactome]{interactome}} \code{\link[HTSanalyzeR:viewSubNet]{viewSubNet}} \code{\link[HTSanalyzeR:plotSubNet]{plotSubNet}} \code{\link[HTSanalyzeR:report]{report}} } \examples{ \dontrun{ library(BioNet) ##load p-values and phenotypes data("KcViab_PVals","KcViab_Data4Enrich") ##load Biogrid interactome for Drosophila Melanogaster data("Biogrid_DM_Interactome") ##create a NWA (NetWork Analysis) object nwa <- new("NWA", pvalues=KcViab_PVals, phenotypes=KcViab_Data4Enrich, interactome=Biogrid_DM_Interactome) ##preprocessing nwa <- preprocess(nwa, species="Dm", initialIDs="Entrez.gene", keepMultipleMappings=TRUE, duplicateRemoverMethod="max") ##To create an interactome nwa <- interactome(nwa, species="Dm", reportDir="HTSanalyzerReport", genetic=FALSE) ##do network analysis nwa <- analyze(nwa, fdr=0.001, species="Dm") graphics.off() ##view identified subnetwork viewSubNet(nwa) ##report to html pages report(object=nwa, experimentName="NWATest", species="Dm", allSig=TRUE, keggGSCs="PW_KEGG", goGSCs=c("GO_BP", "GO_MF", "GO_CC"), reportDir= "NWATestReport") ##browse the index page of the report browseURL(file.path(getwd(), "NWATestReport", "index.html")) } } \keyword{classes}