\name{biasPlot-methods} \docType{methods} \alias{biasPlot} \alias{biasPlot-methods} \alias{biasPlot,matrix,numeric-method} \alias{biasPlot,SeqExpressionSet,character-method} \title{ Methods for Function \code{biasPlot} in Package \pkg{EDASeq} } \description{ \code{biasPlot} produces a plot of the \code{\link{lowess}} regression of the counts on a covariate of interest, tipically the GC-content or the length of the genes. } \section{Methods}{ \describe{ \item{\code{signature(x = "matrix", y = "numeric")}}{ It plots a line representing the regression of every column of the matrix \code{x} on the numeric covariate \code{y}. One can pass the usual graphical parameters as additional arguments (see \code{\link{par}}). } \item{\code{signature(x = "SeqExpressionSet", y = "character")}}{ It plots a line representing the regression of every lane in \code{x} on the covariate specified by \code{y}. \code{y} must be one of the column of the \code{featureData} slot of the \code{x} object. One can pass the usual graphical parameters as additional arguments (see \code{\link{par}}). The parameter \code{col} must be a number specifying the column of \code{phenoData} to be used for color-coding. By default it is color-coded according to the first column of \code{phenoData}. } }} \keyword{methods} \examples{ library(yeastRNASeq) data(geneLevelData) data(yeastGC) sub <- intersect(rownames(geneLevelData),names(yeastGC)) mat <- as.matrix(geneLevelData[sub,]) data <- newSeqExpressionSet(mat,phenoData=AnnotatedDataFrame(data.frame(conditions=factor(c("mut","mut","wt","wt")),row.names=colnames(geneLevelData))),featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub]))) biasPlot(data,"gc",ylim=c(0,5),log=TRUE) }