\name{biasBoxplot-methods} \docType{methods} \alias{biasBoxplot} \alias{biasBoxplot-methods} \alias{biasBoxplot,numeric,numeric,numeric-method} \alias{biasBoxplot,numeric,numeric-method} \title{ Methods for Function \code{biasBoxplot} in Package \pkg{EDASeq} } \description{ \code{biasBoxplot} produces a boxplot representing the distribution of a quantity of interest (e.g. gene counts, log-fold-changes, ...) stratified by a covariate (e.g. gene length, GC-contet, ...). } \usage{ biasBoxplot(x,y,num.bins,...) } \arguments{ \item{x}{A numeric vector with the quantity of interest (e.g. gene counts, log-fold-changes, ...)} \item{y}{A numeric vector with the covariate of interest (e.g. gene length, GC-contet, ...)} \item{num.bins}{A numeric value specifying the number of bins in wich to stratify \code{y}. Default to 10.} \item{...}{See \code{\link{par}}} } \section{Methods}{ \describe{ \item{\code{signature(x = "numeric", y = "numeric", num.bins = "numeric")}}{ It plots a line representing the regression of every column of the matrix \code{x} on the numeric covariate \code{y}. One can pass the usual graphical parameters as additional arguments (see \code{\link{par}}). } }} \keyword{methods} \examples{ library(yeastRNASeq) data(geneLevelData) data(yeastGC) sub <- intersect(rownames(geneLevelData),names(yeastGC)) mat <- as.matrix(geneLevelData[sub,]) data <- newSeqExpressionSet(mat,phenoData=AnnotatedDataFrame(data.frame(conditions=factor(c("mut","mut","wt","wt")),row.names=colnames(geneLevelData))),featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub]))) lfc <- log(geneLevelData[sub,3]+1) - log(geneLevelData[sub,1]+1) biasBoxplot(lfc,yeastGC[sub],las=2,cex.axis=.7) }