\name{SeqExpressionSet-class} \docType{class} \alias{SeqExpressionSet-class} \alias{offst} \alias{offst<-} \alias{initialize,SeqExpressionSet-method} \alias{exprs,SeqExpressionSet-method} \alias{exprs<-,SeqExpressionSet,ANY-method} \alias{offst,SeqExpressionSet-method} \alias{offst<-,SeqExpressionSet,ANY-method} \alias{offst<-,SeqExpressionSet-method} \alias{coerce,SeqExpressionSet,CountDataSet-method} \title{"SeqExpressionSet" class for collections of short reads} \description{ This class represents a collection of digital expression data (usually counts from RNA-Seq technology) along with sample information. } \section{Objects from the Class}{ Objects of this class can be created from a call to the \code{\link{newSeqExpressionSet}} constructor. } \section{Extends}{ Class \code{eSet}, directly. Class \code{VersionedBiobase}, by class \code{eSet}, distance 2. Class \code{Versioned}, by class \code{eSet}, distance 3. } \section{Slots}{ Inherited from \code{eSet}: \describe{ \item{\code{assayData}}{Contains matrices with equal dimensions, and with column number equal to \code{nrow(phenoData)}.\code{assayData} must contain a matrix \code{exprs} with rows represening features (e.g., genes) and columns representing samples. The optional matrix \code{offset} can be added to represent a normalization offset to be used for differential expression analysis. See the vignette for details. Class: \code{\link{AssayData-class}}.} \item{\code{phenoData}}{Sample information. For compatibility with DESeq, there should be at least the column \code{conditions}. See \code{\link{eSet}} for details.} \item{\code{featureData}}{Feature information. It is recomended to include at least length and GC-content information. This slot is used for \code{\link{withinLaneNormalization}}. See \code{\link{eSet}} for details.} \item{\code{experimentData}}{See \code{\link{eSet}}} \item{\code{annotation}}{See \code{\link{eSet}}} \item{\code{protocolData}}{See \code{link{eSet}}} } } \section{Methods}{ See \code{\link{eSet}} for inherited methods. Additional methods: \describe{ \item{exprs}{\code{signature(object="SeqExpressionSet")}: returns the \code{exprs} matrix. } \item{exprs<-}{\code{signature(object = "SeqExpressionSet")}: method to replace the \code{exprs} matrix.} \item{offst}{\code{signature(object = "SeqExpressionSet")}: returns the \code{offset} matrix.} \item{offst<-}{\code{signature(object = "SeqExpressionSet")}: method to replace the \code{offset} slot.} \item{boxplot}{\code{signature(x = "SeqExpressionSet")}: produces a boxplot of the log counts.} \item{meanVarPlot}{\code{signature(x = "SeqExpressionSet")}: produces a \code{\link{smoothScatter}} plot of the mean variance relation. See \code{\link{meanVarPlot}} for details.} \item{biasPlot}{\code{signature(x = "SeqExpressionSet", y = "character")}: produces a plot of the \code{\link{lowess}} regression of the counts on some covariate of interest (usually GC-content or length). See \code{\link{biasPlot}} for details.} \item{wihtinLaneNormalization}{\code{signature(x = "SeqExpressionSet", y = "missing")}: within lane normalization for GC-content (or other lane specific) bias. See \code{\link{withinLaneNormalization}} for details.} \item{betweenLaneNormalization}{\code{signature(x = "SeqExpressionSet")}: between lane normalization for sequencing depth and possibly other distributional differences between lanes. See \code{\link{betweenLaneNormalization}} for details.} \item{coerce}{\code{signature(from = "SeqExpressionSet", to = "CountDataSet")}: coercion to \code{DESeq} class \code{\linkS4class{CountDataSet}} for compatibility with downstream analysis.} } } \author{Davide Risso } \seealso{ \code{\linkS4class{eSet}}, \code{\link{newSeqExpressionSet}}, \code{\link{biasPlot}}, \code{\link{withinLaneNormalization}}, \code{\link{betweenLaneNormalization}} } \examples{ showMethods(class="SeqExpressionSet", where=getNamespace("EDASeq")) exprs <- matrix(data=0,nrow=100,ncol=4) for(i in 1:4) { exprs[,i] <- rpois(100,lambda=50) } cond <- c(rep("A",2),rep("B",2)) counts <- newSeqExpressionSet(exprs,phenoData=AnnotatedDataFrame(data.frame(conditions=cond))) head(exprs(counts)) boxplot(counts,col=as.numeric(pData(counts)[,1])+1) } \keyword{classes}