\name{MDPlot-methods} \docType{methods} \alias{MDPlot} \alias{MDPlot-methods} \alias{MDPlot,matrix,numeric-method} \alias{MDPlot,SeqExpressionSet,numeric-method} \title{ Methods for Function \code{MDPlot} in Package \pkg{EDASeq} } \description{ \code{MDPlot} produces a mean-difference smooth scatterplot of two lanes in an experiment. } \usage{ MDPlot(x,y,...) } \arguments{ \item{x}{Either a numeric matrix or a \code{\linkS4class{SeqExpressionSet}} object containing the gene expression. } \item{y}{A numeric vecor specifying the lanes to be compared.} \item{...}{See \code{\link{par}}} } \details{ The mean-difference (MD) plot is a useful plot to visualize difference in two lanes of an experiment. From a MDPlot one can see if normalization is needed and if a linear scaling is sufficient or nonlinear normalization is more effective. The MDPlot also plots a lowess fit (in red) underlying a possible trend in the bias related to the mean expression. } \section{Methods}{ \describe{ \item{\code{signature(x = "matrix", y = "numeric")}}{ } \item{\code{signature(x = "SeqExpressionSet", y = "numeric")}}{ } }} \keyword{methods} \examples{ library(yeastRNASeq) data(geneLevelData) data(yeastGC) sub <- intersect(rownames(geneLevelData),names(yeastGC)) mat <- as.matrix(geneLevelData[sub,]) data <- newSeqExpressionSet(mat,phenoData=AnnotatedDataFrame(data.frame(conditions=factor(c("mut","mut","wt","wt")),row.names=colnames(geneLevelData))),featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub]))) MDPlot(data,c(1,3)) }