\name{DTA.generate} \alias{DTA.generate} \title{Simulation of DTA experiments} \description{DTA.generate produces the phenotype matrix and the matrix containing the simulated data according to the given parameters.} \usage{ DTA.generate(timepoints, tnumber = NULL, plabel = NULL, nrgenes = 5000, mediantime = 12, ccl = 150, delaytime = 0, sdnoise = 0.075, nobias = FALSE, unspecific.LtoU = 0, unspec.LtoU.weighted = FALSE, unspecific.UtoL = 0, unspec.UtoL.weighted = FALSE, truehalflives = NULL, truecomplete = NULL, genenames = NULL, cDTA = FALSE) } \arguments{ \item{timepoints}{Integer vector containing the labeling times for which the samples should be generated.} \item{tnumber}{Integer vector containing the number of uridine residues for each gene. If NULL, tnumber is sampled from an F-distribution within the function.} \item{plabel}{The labeling efficiency. If NULL, plabel is set to 0.005 within the function. For details, see supplemental material of Sun et al. (see references).} \item{nrgenes}{The number of genes the simulated experiment will have (will be cropped if it exceeds the length of tnumber).} \item{mediantime}{The median of the randomly drawn half-life distribution.} \item{ccl}{The cell cycle length (in minutes).} \item{delaytime}{Estimates the delay between the moment of 4sU/4tU labeling and actual incorporation of it into mRNA.} \item{sdnoise}{The amount of measurement noise (proportional to expression strength).} \item{nobias}{Should a labeling bias be added?} \item{unspecific.LtoU}{Proportion of labeled RNAs that unspecifically end up in the unlabeled fraction.} \item{unspec.LtoU.weighted}{Should unspecific proportion of labeled to unlabeled depend linearly on the length of the RNA?} \item{unspecific.UtoL}{Proportion of unlabeled RNAs that unspecifically end up in the labeled fraction.} \item{unspec.UtoL.weighted}{Should unspecific proportion of unlabeled to labeled depend linearly on the length of the RNA?} \item{truehalflives}{If the data should be generated using a given half-life distribution, this vector must contain the respective values for each gene.} \item{truecomplete}{If the data should be generated using a given expression distribution, this vector must contain the respective values for each gene.} \item{genenames}{An optional list of gene names.} \item{cDTA}{cDTA = FALSE does not rescale L and U.} } \value{ DTA.generate returns a list, containing the following entries \item{phenomat}{A matrix, containing the design of the experiment as produced by \code{DTA.phenomat}.} \item{datamat}{A matrix, containing the simulated measurements from U, L and T, according to the design given in phenomat.} \item{tnumber}{Integer vector containing the number of uridine residues for each gene.} \item{ccl}{The cell cycle length (in minutes).} \item{truecomplete}{A vector, containing the true amount of total RNA.} \item{truelambdas}{A vector, containing the true decay rates.} \item{truemus}{A vector, containing the true synthesis rates.} \item{truehalflives}{A vector, containing the true half-lives.} \item{trueplabel}{The true labeling efficiency. For details, see supplemental material of Miller et al. (see references).} \item{truear}{The true parameter ar. For details, see supplemental material of Miller et al. (see references).} \item{truebr}{The true parameter br. For details, see supplemental material of Miller et al. (see references).} \item{truecr}{The true parameter cr. For details, see supplemental material of Miller et al. (see references).} \item{truecrbyar}{The true parameter cr/ar. For details, see supplemental material of Miller et al. (see references).} \item{truecrbybr}{The true parameter cr/br. For details, see supplemental material of Miller et al. (see references).} \item{truebrbyar}{The true parameter br/ar. For details, see supplemental material of Miller et al. (see references).} \item{trueLasymptote}{The true parameter asymptote (labeled bias). For details, see supplemental material of Miller et al. (see references).} \item{trueUasymptote}{The true parameter asymptote (unlabeled bias). For details, see supplemental material of Miller et al. (see references).} } \references{ C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Duemcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Doelken, D. E. Martin, A. Tresch, and P. Cramer. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol, 7:458, 2011. M. Sun, B. Schwalb, D. Schulz, N. Pirkl, L. Lariviere, K. Maier, A. Tresch, P. Cramer. Mutual feedback between mRNA synthesis and degradation buffers transcript levels in a eukaryote. Under review. B. Schwalb, B. Zacher, S. Duemcke, D. Martin, P. Cramer, A. Tresch. Measurement of genome-wide RNA synthesis and decay rates with Dynamic Transcriptome Analysis (DTA/cDTA). Bioinformatics. } \author{Bjoern Schwalb \email{schwalb@lmb.uni-muenchen.de}} \examples{ sim.object = DTA.generate(timepoints=rep(c(6,12),2)) ### for control plots set 'check = TRUE' ### res.sim = DTA.estimate(ratiomethod = "bias",simulation = TRUE,sim.object = sim.object,check = FALSE) } \keyword{datagen}