\name{plotMotif} \alias{plotMotif} \title{Correlation Motif plot} \description{This function plots the Correlation Motif patterns and the associated prior probability distributions.} \usage{ plotMotif(fitted_cormotif,title="") } \arguments{ \item{fitted_cormotif}{The object obtained from cormotiffit. } \item{title}{ The title for the graph. } } \details{Each row in both graphs corresponds to one motif pattern. The left graph shows the correlation motif pattern. The grey color scale of cell \eqn{(k,d)} indicates the probability that motif \eqn{k} is differentially expressed in study \eqn{d}. Each row of the bar chart corresponds to the motif pattern in the same row of the left pattern graph. The length of the bar in the bar chart shows the number of genes of the given pattern in the dataset, which is equal to \eqn{motif.fitted\$bestmotif\$motif.prior} multiplying the number of total genes.} \author{Hongkai Ji, Yingying Wei} \references{Ji, H., Wei, Y.,(2011) Correlation Motif. Unpublished} \examples{ data(simudata2) n<-nrow(simudata2) m<-ncol(simudata2) #the expression data is from the second column to m exprs.simu2<-as.matrix(simudata2[,2:m]) #prepare the group ID number for each sample array data(simu2_groupid) #prepare the design matrix for each group of samples data(simu2_compgroup) #fit 2 correlation motif to the data motif.fitted<-cormotiffit(exprs.simu2, simu2_groupid,simu2_compgroup,K=2) plotMotif(motif.fitted) }