
Robust calibration and variance stabilization with VSN

Wolfgang Huber

April 25, 2006

Contents

1 Getting started: brief overview 1

2 Running vsn on data from a single two-color array 2

3 Running vsn on data from multiple arrays (“single color normalization”) 5

4 Running vsn on Affymetrix data 8

5 Running vsn from the limma package 9

6 The calibration parameters 11
6.1 More on calibration . 12

7 Assessing vsn 12

8 Quality control 15

1 Getting started: brief overview

vsn is a method to preprocess microarray intensity data. Calling vsn can be as simple as

> e2 <- vsn(e1)

where e1 is an exprSet with raw data and e2 one with calibrated and glog-transformed
data. e1 can also be a matrix, a data frame with numeric columns only, or an object of
class marrayRaw. It contains the raw intensity measurements from the DNA probes on a
series of microarrays (with rows corresponding to probes, columns to arrays and/or dyes).

The so-called glog (short for generalized logarithm) is a function that is like the
natural logarithm for large values (large compared to the background noise), but is less
steep for smaller values. Differences between the transformed values are the generalized

1

log-ratios. These are shrinkage estimators of the natural logarithm of the fold change.
For example,

> M <- exprs(e2)[, i] - exprs(e2)[, j]

produces the vector of generalized log-ratios between samples i and j. Notes that these
are to base e. If you want to convert them to base 2, divide them by log(2). If you want
to know the estimated the fold change, exponentiate:

> M.base2 <- M/log(2)

> fold.change <- exp(M)

Generalized log-ratios can be viewed as a shrinkage estimator : they are always smaller
than or equal to the naive log-ratios; equality is asymptotically reached if the probe intensi-
ties are large both for samples i and j. Their advantage is that they do not suffer from the
variance divergence of the naive log-ratios at small intensities: they remain well-defined and
statistically meaningful when the data come close to zero or even become negative. Please
consult the references for more on the mathematical-methodical background [1, 2, 3].

In short, each column is calibrated by an affine transformation1, then the whole data
are transformed by a variance-stabilizing transformation. After this, systematic array- or
dye-biases should be removed, and the variance should be approximately independent of
the mean intensity. Many statistical methods such as hypothesis tests, ANOVA modeling,
clustering, or classification work better or are easier to use if the variance of the data is
roughly the same for all observations2.

2 Running vsn on data from a single two-color array

The package includes example data from a cDNA array on which two biologically very
similar samples, one labeled in green (Cy3), one in red (Cy5), were hybridized.

> library(vsn)

> data(kidney)

The two columns of the matrix exprs(kidney) contain the green and red intensities, respec-
tively. Let’s try out vsn on these example data. In Fig. 1 you can see the scatterplot of the
calibrated and transformed data. For comparison, the scatterplot of the log-transformed
raw intensities is also shown.

> nkid <- vsn(kidney)

1It is possible to stratify the transformations within columns, see the strata parameter of vsn.
2Note that vsn only addresses the dependence of the variance on the mean intensity. There may be

other factors influencing the variance, such as gene-inherent properties, or changes of the tightness of
transcriptional control in different conditions. If necessary, these need to be addressed by other methods.

2

> par(mfrow = c(1, 2))

> log.na = function(x) log(ifelse(x > 0, x, NA))

> plot(exprs(nkid), main = "vsn", pch = ".")

> plot(log.na(exprs(kidney)), main = "raw", pch = ".")

4 5 6 7 8 9 10

4
5

6
7

8
9

10

vsn

green

re
d

−2 0 2 4 6 8 10
−

2
0

2
4

6
8

10

raw

green

re
d

Figure 1: Scatterplots of the kidney example data

vsn returns the transformed intensities in an object of class exprSet. Its slot exprs is a
matrix of the same size as the input data. The plot in Fig. 1 shows the complete set of
n = 9216 red and green intensities, without any thresholding or masking of data points.
To verify the variance stabilization, there is the function meanSdPlot. For each probe
k = 1, . . . , n it shows the estimated standard deviation σ̂k on the y-axis versus the rank of
the average µ̂k on the x-axis,

µ̂k =
1
d

d∑
i=1

hki σ̂2
k =

1
d− 1

d∑
i=1

(hki − µ̂k)2. (1)

> par(mfrow = c(1, 2))

> meanSdPlot(nkid, ranks = TRUE)

> meanSdPlot(nkid, ranks = FALSE)

Such a plot is shown in Fig. 2. The red dots, connected by lines, show the running median
of the standard deviation3. Within each window, the median may be considered a pooled

3Window width: 10%, window midpoints 5%, 10%, 15%,

3

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank(mean)

sd

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean

sd

●●●●●●●●●●●●●●●●●● ●

Figure 2: Standard deviation versus rank of the mean, and the mean, respectively

estimator of the standard deviation, and the curve given by the red line is an estimate of the
systematic dependence of the standard deviation on the mean. After variance stabilization,
this should be approximately a horizontal line. It may have some random fluctuations, but
should not show an overall trend. If this is not the case, that usually indicates a data
quality problem, or is a consequence of inadequate prior data preprocessing. The rank
ordering distributes the data evenly along the x-axis. A plot in which the x-axis shows the
average intensities themselves is obtained by calling the plot command with the argument
ranks=FALSE.

The parameter estimation in vsn works in an iterative manner. To verify that the
iterations have converged, you can call the function vsnPlotPar.

> par(mfrow = c(1, 2))

> vsnPlotPar(nkid, "offsets")

> vsnPlotPar(nkid, "factors")

The plots in Fig. 3 show the values of the estimated calibration and variance stabilization
parameters on the y-axis as a function of the iteration index. All curves should reach a
plateau before the last iteration. If this is not the case, the number of iterations may be
increased through the parameter iter. It could also indicate a data quality problem, see
Section 8.

The generalized log-ratios for this experiment can be obtained for further processing
through

4

●

● ● ● ● ●

●

● ● ●

2 4 6 8 10

−
0.

20
−

0.
10

iter

of
fs

et
s

●

● ● ● ● ●

●

● ● ● ●

● ● ● ● ●
●

● ● ●

2 4 6 8 10

0.
00

26
0.

00
28

iter

fa
ct

or
s

●

● ● ● ● ●
●

● ● ●

Figure 3: Iteration trajectory of the calibration and transformation parameters

> M <- exprs(nkid)[, 2] - exprs(nkid)[, 1]

> hist(M, breaks = 50, col = "#d95f0e")

The histogram is shown in Fig. 3.

3 Running vsn on data from multiple arrays (“single color
normalization”)

The package includes example data from a series of 8 cDNA arrays on which different
lymphoma were hybridized together with a reference cDNA [6].

> data(lymphoma)

> dim(exprs(lymphoma))

[1] 9216 16

> pData(lymphoma)

name sample
1 lc7b047 reference
2 lc7b047 CLL-13

5

Histogram of M

M

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0 1.5

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 4: Histogram of generalized log-ratios for the kidney example data

3 lc7b048 reference
4 lc7b048 CLL-13
5 lc7b069 reference
6 lc7b069 CLL-52
7 lc7b070 reference
8 lc7b070 CLL-39
9 lc7b019 reference
10 lc7b019 DLCL-0032
11 lc7b056 reference
12 lc7b056 DLCL-0024
13 lc7b057 reference
14 lc7b057 DLCL-0029
15 lc7b058 reference
16 lc7b058 DLCL-0023

The 16 columns of the lymphoma object contain the red and green intensities, respec-
tively, from the 8 slides, as shown in the table. Thus, the CH1 intensities are in columns
1, 3, . . . , 15, the CH2 intensities in columns 2, 4, . . . , 16. We can call vsn on all of them at
once:

> lym <- vsn(lymphoma)

This calculation may take a while.

> meanSdPlot(lym)

6

0 2000 4000 6000 8000

0.
5

1.
0

1.
5

2.
0

2.
5

rank(mean)

sd

● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 5: Standard deviation versus rank of the mean for the lymphoma example data

Again, Fig. 5 helps to visually verify that the variance stabilization worked. As above, we
can obtain the generalized log-ratios for each slide, by subtracting the common reference
intensities from those for the 8 samples:

> refrs <- (1:8) * 2 - 1

> samps <- (1:8) * 2

> M <- exprs(lym)[, samps] - exprs(lym)[, refrs]

> colnames(M) <- pData(lymphoma)[samps, "sample"]

> A <- rowMeans(exprs(lym))

> par(mfrow = c(1, 2))

> plot(A, M[, "CLL-13"], pch = ".")

> abline(h = 0, col = "red")

> plot(A, M[, "DLCL-0032"], pch = ".")

> abline(h = 0, col = "red")

Fig. 6 shows the analagon to the M -vs-A-plots as described in reference [5]. Note that in
the left scatterplot, there is a cloud of points at low intensities that is concentrated slightly
off the line M = 0. In the right scatterplot, a similar cloud sits right on the M = 0 line.
This could be related to a quality problem with the left slide (e. g. related to the PCR
amplification or the printing, see Section 8).

7

2 4 6 8

−
6

−
4

−
2

0
2

A

M
[,

"C
LL

−
13

"]

2 4 6 8

−
2

−
1

0
1

2
3

A

M
[,

"D
LC

L−
00

32
"]

Figure 6: Mean-difference plots for two slides from the lymphoma example data

4 Running vsn on Affymetrix data

The package affy provides excellent functionality for reading and processing Affymetrix
genechip data. To use vsn for the calibration and transformation of the probe intensities,
a wrapper is provided that can be used within the data processing routines of affy. See
the documentation for the package affy for more information about data structures and
other available methods. Affymetrix genechips preprocessing involves the following steps:
(i) combining the perfect match (PM) and mismatch (MM) intensities into one number
per probe, (ii) calibrating, (iii) transforming, and (iv) summarizing. vsn addresses the
calibration and transformation. We can use the function expresso to run the whole process
in one go:

> library(affy)

> library(affydata)

> data(Dilution)

> normalize.AffyBatch.methods <- c(normalize.AffyBatch.methods,

+ "vsn")

> es1 = expresso(Dilution[, 1:2], bg.correct = FALSE, normalize.method = "vsn",

+ pmcorrect.method = "pmonly", summary.method = "medianpolish")

Here, we have ignored the MM values and used medianpolish for summarization, as
in the RMA method [8]. For comparison, let’s calculate expression values using another

8

normalization method. The resulting plots are shown in Fig. 7.

> es2 = expresso(Dilution[, 1:2], bgcorrect.method = "rma", normalize.method = "quantiles",

+ pmcorrect.method = "pmonly", summary.method = "medianpolish")

> x1 = exprs(es1)

> x2 = exprs(es2)

> par(mfrow = c(2, 2), pch = ".")

> plot(x1, main = "vsn: chip 3 vs 4")

> plot(x2, main = "rma: chip 3 vs 4")

> ylim = c(-0.7, 0.7)

> plot(rank(rowSums(x1)), diff(t(x1)), ylim = ylim, main = "rank(mean) vs differences")

> abline(h = 0, col = "red")

> plot(rank(rowSums(x2)), diff(t(x2)), ylim = ylim, main = "rank(mean) vs differences")

> abline(h = 0, col = "red")

Note that while the values of vsn are normally represented on the natural logarithmic
scale, with the wrapper normalize.AffyBatch.vsn they are transformed to the logarithm
base 2 scale. This way normalize.AffyBatch.vsn fits into the conventions of the expresso-
function.

5 Running vsn from the limma package

vsn can be called from the limma package through the function normalizeBetweenArrays:

> library(limma)

> MA <- normalizeBetweenArrays(RG, method = "vsn")

Note that RG should contain raw intensities, i. e., prior log-transformation or any nor-
malization. The returned intensities and log-ratios in MA are on the log−2 scale, not the
log−e scale as when vsn is called directly. Please see also the help page for normalize-
BetweenArrays.

For print-tip wise normalization, construct a function pinId that calculates the print-tip
ID (1...16) for every spot:

> pinId <- function(x) unlist(lapply(1:(x$ngrid.r * x$ngrid.c),

+ rep, x$nspot.r * x$nspot.c))

and call

> MA <- normalizeBetweenArrays(RG, method = "vsn", strata = pinId(thelayout))

9

7 8 9 10 11 12 13 14

7
8

9
10

12

vsn: chip 3 vs 4

20A

20
B

2 4 6 8 10 12

2
4

6
8

10
12

rma: chip 3 vs 4

20A

20
B

0 2000 6000 10000

−
0.

6
−

0.
2

0.
2

0.
6

rank(mean) vs differences

rank(rowSums(x1))

di
ff(

t(
x1

))

0 2000 6000 10000

−
0.

6
−

0.
2

0.
2

0.
6

rank(mean) vs differences

rank(rowSums(x2))

di
ff(

t(
x2

))

Figure 7: normalize.AffyBatch.vsn example

10

6 The calibration parameters

If yki is the matrix of uncalibrated data, with k indexing the rows and i the columns, then
the calibrated data y′

ki is obtained through scaling by λsi and shifting by osi:

y′
ki =

yki − osi

λsi
, (2)

where s ≡ s(k) is the so-called stratum for probe k. In the simplest case, there is only
one stratum, i. e. the index s is always equal to 1, or may be omitted altogether. This
amounts to assuming that that the data of all probes on an array were subject to the same
systematic effects, such that an array-wide calibration is sufficient.

A model with multiple strata per array may be useful for spotted arrays. For these,
stratification may be according to print-tip [5] or PCR-plate [2]. For oligonucleotide arrays,
it may be useful to stratify the probes by physico-chemical properties, e. g. to assume that
probes of different sequence composition attract systematically different levels of unspecific
background signal.

The transformation to a scale where the variance of the data is approximately indepen-
dent of the mean is

hki = arsinh(a0 + b0y
′
ki) = log

(
a0 + b0y

′
ki +

√(
a0 + b0y′

ki

)2 + 1
)

. (3)

Eqns. (2) and (3) can be combined, so that the whole transformation is given by

hki = arsinh(asi + bsiyki). (4)

Here, asi = a0− b0osi/λsi and bsi = b0/λsi are the combined calibation and transformation
parameters for probes from stratum s and sample i.

We can access the calibration and transformation parameters through

> prep <- preproc(description(nkid))

> names(prep)

[1] "vsnParams" "vsnParamsIter" "vsnTrimSelection"

> prep$vsnParams

, , 1

[,1] [,2]
[1,] -0.037301 -0.01540317

, , 2

[,1] [,2]
[1,] 0.00264677 0.002573589

11

The description slot of an exprSet is an object of class MIAME, and may contain an-
notation data pertinent to the experiment represented by the object. For an exprSet with
d sample and ns probe strata (see Section ??), prep$vsnParams is a numeric array with
dimensions (ns, d, 2). prep$vsnParams[s, i, 1] is what was called asi in Eqn. (4), and
prep$vsnParams[s, i, 2] is bsi. Compare the numbers printed above with the final val-
ues in Fig. 3.

6.1 More on calibration

Now suppose the kidney example data were not that well measured, and the red channel
had a baseline that was shifted by 500 and a scale that differed by a factor of 0.25:

> bkid <- kidney

> exprs(bkid)[, "red"] <- 0.25 * (500 + exprs(bkid)[, "red"])

We can again call vsn on this data

> nbkid <- vsn(bkid)

> par(mfrow = c(1, 2))

> plot(exprs(bkid), main = "raw", pch = ".", log = "xy")

> plot(exprs(nbkid), main = "vsn", pch = ".")

> preproc(description(nbkid))$vsnParams[1, ,]

[,1] [,2]
[1,] -0.07043783 0.002663749
[2,] -1.34136770 0.010349088

The factor for the red channel is now about four times as large as before. The result is
shown in Fig. 8.

7 Assessing vsn

The function vsn is a parameter estimation algorithm that fits the parameters for a certain
model. In order to see how good the estimator is, we can look at bias, variance, sample
size dependence, robustness against model misspecificaton and outliers. This is done in the
document convergence.pdf, which can be found in the doc subdirectory of the package.

Practically, the more interesting question is how different microarray calibration and
data transformation methods compare to each other. For this, one needs to specify a
measure of goodness. One approach is to compare the obtained values against a known
truth. This can be done in controlled spike-in experiments and in dilution series, which
allow to systematically assess the performance of the methods at different biologically

12

1e−01 1e+01 1e+03

10
50

50
0

50
00

raw

green

re
d

4 5 6 7 8 9 10

4
5

6
7

8
9

10

vsn

green

re
d

Figure 8: Scatterplots for badly biased data. Left hand side: raw data on log-log scale,
right hand side: after calibration and transformation with vsn.

relevant spike-in concentrations. Like any statistical method, one can make different choices
with respect to the trade-off between bias and variance [7].

Here, we focus on one particular aspect: the overall sensitivity and specificity in detect-
ing differential transcription. The following type of analysis can be applied to any data set
that contains replicated measurements made on samples from biologically distinct, known
groups. The idea is that we compare the within-group variability (among the biological
replicates) to the between-group variability (between different tissue types). The smaller
the former and the larger the latter, the better we may deem the performance of the
calibration and data transformation.

Here, as a measure of the relative size of between- and within-group variability we take
the size of the t-statistics. The acceptable use of CPU time and disk memory of a package
vignette is limited, thus here we stick to a very simple-minded calculation, and a small
data set. See Fig. 9 and the calculations below. Two applications to larger data sets are
described in reference [1]. More sophisticated analyses can be made by comparing not just
the distributions of t-statistics, but for example, the estimated false discovery rates, using
different test statistics. You are encouraged to try this out with your own data.

> library(marray)

> mr <- new("marrayRaw", maGf = exprs(lymphoma)[, refrs], maRf = exprs(lymphoma)[,

+ samps], maLayout = new("marrayLayout", maNgr = 4, maNgc = 4,

13

−6 −4 −2 0 2

−
6

−
4

−
2

0
2

4

slide 1

M (vsn)

M
 (

gl
ob

al
 m

ed
ia

n)

−30 −20 −10 0 10 20

−
20

−
10

0
10

20

QQ plot

t (vsn)

t (
gl

ob
al

 m
ed

ia
n)

Figure 9: Left hand side: x-axis – generalized log-ratios for slide 1 from vsn, y-axis – log-
ratios for slide 1 after global median normalization. For most genes, the two are the same,
but in some cases the generalized log-ratio is smaller. It is never larger. This demonstrates
the ratio shrinkage by the variance stabilization. Right hand side: quantile-quantile-plot
of the t-statistic for the comparison between the 4 slides with CLL and the 4 with DLCL.
The t-statistics from vsn are larger, i. e. it compares more favorable with respect to the
relative size of between- and within-group variability.

14

+ maNsr = 24, maNsc = 24))

> mn <- maNorm(mr, norm = "median", echo = TRUE)

> par(mfrow = c(1, 2))

> library(multtest)

> plot(M[, 1], mn@maM[, 1] * log(2), xlab = "M (vsn)", ylab = "M (global median)",

+ main = "slide 1", pch = ".")

> abline(a = 0, b = 1, col = "blue")

> classlabel <- regexpr("CLL", colnames(M)) > 0

> t1 <- mt.teststat(M, classlabel)

> t2 <- mt.teststat(mn@maM, classlabel)

> qqplot(t1, t2, xlab = "t (vsn)", ylab = "t (global median)",

+ main = "QQ plot", pch = ".")

> abline(a = 0, b = 1, col = "blue")

8 Quality control

vsn makes some assumptions about your data that need to hold if it is to produce mean-
ingful results. We have found them appropriate for many microarray experiments, but it
is your responsibility to make sure that they hold for your data.

First, vsn assumes that the measured signal yik increases, to sufficient approximation,
proportionally to the mRNA abundance cik of gene k on the i-th array, or on the i-th color
channel:

yik ≈ ai + bibkcik. (5)

For a series of d single-color arrays such as Affymetrix arrays or cDNA nylon membranes,
i = 1, . . . , d, and the different factors bi reflect the different initial amounts of sample
mRNA, or different overall reverse transcription, hybridization and detection efficiencies.
The probe affinity bk contains factors that affect all measurements with probe k in the
same manner, such as sequence-specific labelling efficiency. The bk are assumed to be the
same across all arrays. There can be a non-zero overall offset ai for each color channel.
For a two-color cDNA array, i = 1, 2, and the bi take into account the different overall
efficiencies of the two dyes4.

Systematic effects associated with print-tip, PCR, or probe-sequence Equa-
tion 5 can be generalized to

yik ≈ ais + bisbkcik. (6)
4It has been reported that for some genes the dye bias is different from gene to gene, such that the

proportionality factor does not simply factorize as in (5). As long as this only occurs sporadically, this
should not have much effect on the estimation of the calibration and variance stabilization parameters.
Further, by using an appropriate experimental design such as color-swap or reference design, the effects of
gene-specific dye-biases to subsequent analyses can also be reduced.

15

that is, the background term ais and the gain factor bis can be different for different groups
s of probes on an array. For example, with cDNA microarray data, it could be advantageous
to fit different parameters for each print-tip group of spots, or for groups of spots whose
DNA was PCR–amplified and stored in the same microtitre plate. For Affymetrix chips,
one can find systematic dependences of the affinities bis or the background terms ais on
the probe sequence. This can be addressed by using the strata argument of the function
vsn.

Situations in which the assumptions (5) or (6) are violated include:

Saturation. The biochemical reactions and/or the photodetection can be run in such a
manner that saturation effects occur. It may be possible to rescue such data by using non-
linear transformations. Alternatively, it is recommended that the experimental parameters
are chosen to avoid saturation.

Batch effects. The probe affinities bk may differ between different manufacturing batches
of arrays due, e.g., to different qualities of DNA amplification or printing. vsn cannot be
used to simultaneously calibrate and transform data from different batches.

How to reliably diagnose and deal with such violations is beyond the scope of this
vignette; see the references for more [5, 2].

Variance. A further assumption that vsn makes is that the measurement error (more
exactly: the variance) is the sum of two contributions: an additive component that has
roughly the same size for all probes on an array, and a multiplicative component that is
roughly proportional in size to the signal’s true value, with a proportionality factor (called
the coefficient of variation) that is the same for all genes [4].

Most genes unchanged assumption. vsn assumes that only a minority (less than half)
of genes on the arrays is detectably differentially transcribed across the experiments. If it
is safe to assume that a smaller fraction of genes is non-negligibly differentially transcribed,
the efficiency of the estimation can be improved by increasing the parameter lts.quantile
from its default value of 0.5 to a value between 0.5 and 1.

Processing biases. Image analysis software for cDNA arrays typically estimates a local
background associated with each probe intensity. For Affymetrix arrays, the intensities from
mismatch probes are thought to represent the level of non-specific signal. In both cases, the
raw probe intensities may be adjusted by subtracting these background estimates. Some
software packages, however, bias the adjustment through rules based on the data values.
For example, Affymetrix’ MAS 5.0 software uses the mismatch intensity only if it is smaller
than the probe’s intensity, and otherwise employs a heuristic to make sure that the net
intensities always remain positive. As a consequence, the intensities are systematically

16

over-estimated, and cannot be used with vsn. For Affymetrix data, we recommend to use
vsn on the probe intensities from the ”CEL file”. For cDNA data, we recommend to use
only background adjustment procedures that estimate the background independent of the
observed foreground intensity.

References

[1] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Variance
stablization applied to microarray data calibration and to quantification of differential
expression. Bioinformatics, 18:S96–S104, 2002. 2, 13

[2] W. Huber, A. von Heydebreck, and M. Vingron. Analysis of microarray gene expression
data. To appear in the Handbook of Statistical Genetics, 2003. Eds.: D. J. Balding,
M. Bishop, C. Cannings. John Wiley & Sons, Inc., 2, 11, 16

[3] W. Huber, A. von Heydebreck, H. Sültmann, A. Poustka, and M. Vingron. Parameter
estimation for the calibration and variance stabilization of microarray data. Statis-
tical Applications in Genetics and Molecular Biology, Vol. 2: No. 1, Article 3, 2003.
http://www.bepress.com/sagmb/vol2/iss1/art3 2

[4] David M. Rocke and Blythe Durbin. A model for measurement error for gene expres-
sion analysis. Journal of Computational Biology, 8:557–569, 2001. 16

[5] S. Dudoit, Y. H. Yang, T. P. Speed, and M. J. Callow. Statistical methods for identi-
fying differentially expressed genes in replicated cDNA microarray experiments. Sta-
tistica Sinica, 12:111–139, 2002. 7, 11, 16

[6] A. A. Alizadeh et al. Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature, 403:503–511, 2000. 5

[7] L. M. Cope, R. A. Irizarry, H. A. Jaffee, Z. Wu, and T. P. Speed. A Benchmark for
Affymetrix GeneChip Expression Measures. Bioinformatics, 20:323–331, 2004. 13

[8] R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high density oligonu-
cleotide array probe level data. Biostatistics 4:249–264, 2003. 8

17

	Getting started: brief overview
	Running vsn on data from a single two-color array
	Running vsn on data from multiple arrays (``single color normalization'')
	Running vsn on Affymetrix data
	Running vsn from the limma package
	The calibration parameters
	More on calibration

	Assessing vsn
	Quality control

