We will explore a subset of data collected by the CDC through its extensive Behavioral Risk Factor Surveillance System (BRFSS) telephone survey. Check out the link for more information. We’ll look at a subset of the data.
Use file.choose()
to find the path to the file ‘BRFSS-subset.csv’
path <- file.choose()
Input the data using read.csv()
, assigning to a variable brfss
brfss <- read.csv(path)
Use command like class()
, head()
, dim()
, colnames()
, summary()
to explore the data.
What variables have been measured?
Can you guess at the units used for, e.g., Weight and Height?
Use the $
operator to extract the ‘Sex’ column, and summarize the number of males and females in the survey using table()
. Do the same for ‘Year’.
table(brfss$Sex)
##
## Female Male
## 12039 7961
The xtabs()
function performs cross-tabulation using a formula-like interface; summarize the number of males and female in each year of the study.
xtabs(~ Year + Sex, brfss)
## Sex
## Year Female Male
## 1990 5718 4282
## 2010 6321 3679
Use aggregate()
to summarize the mean weight of each group. What about the median weight of each group?
aggregate(Weight ~ Year + Sex, brfss, mean)
## Year Sex Weight
## 1 1990 Female 64.81838
## 2 2010 Female 72.95424
## 3 1990 Male 81.17999
## 4 2010 Male 88.84657
Create a subset of the data consisting of only the 1990 observations. Perform a t-test comparing the weight of males and females (“‘Weight’ as a function of ‘Sex’”, Weight ~ Sex
)
brfss_1990 = brfss[brfss$Year == 1990,]
t.test(Weight ~ Sex, brfss_1990)
##
## Welch Two Sample t-test
##
## data: Weight by Sex
## t = -58.734, df = 9214, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -16.90767 -15.81554
## sample estimates:
## mean in group Female mean in group Male
## 64.81838 81.17999
What about differences between weights of males (or females) in 1990 versus 2010? Check out the help page ?t.test.formula
. Is there a way of performing a t-test on brfss
without explicitly creating the object brfss_1990
?
Use boxplot()
to plot the weights of the Male individuals. Can you transform weight, e.g., sqrt(Weight) ~ Year
? Interpret the results. Do similar boxplots for the t-tests of the previous question.
boxplot(Weight ~ Year, brfss, subset = (Sex == "Male"),
main="Males")
Use hist()
to plot a histogram of weights of the 1990 Female individuals.
hist(brfss_1990[brfss_1990$Sex == "Female", "Weight"],
main="Females, 1990", xlab="Weight" )
This data comes from an (old) Acute Lymphoid Leukemia microarray data set.
Choose the file that contains ALL (acute lymphoblastic leukemia) patient information
path <- file.choose() # look for ALL-phenoData.csv
stopifnot(file.exists(path))
pdata <- read.csv(path)
Check out the help page ?read.delim
for input options. The exercises use ?read.csv
; Can you guess why? Explore basic properties of the object you’ve created, for instance…
class(pdata)
## [1] "data.frame"
colnames(pdata)
## [1] "X" "cod" "diagnosis" "sex" "age"
## [6] "BT" "remission" "CR" "date.cr" "t.4.11."
## [11] "t.9.22." "cyto.normal" "citog" "mol.biol" "fusion.protein"
## [16] "mdr" "kinet" "ccr" "relapse" "transplant"
## [21] "f.u" "date.last.seen"
dim(pdata)
## [1] 128 22
head(pdata)
## X cod diagnosis sex age BT remission CR date.cr t.4.11. t.9.22. cyto.normal citog
## 1 01005 1005 5/21/1997 M 53 B2 CR CR 8/6/1997 FALSE TRUE FALSE t(9;22)
## 2 01010 1010 3/29/2000 M 19 B2 CR CR 6/27/2000 FALSE FALSE FALSE simple alt.
## 3 03002 3002 6/24/1998 F 52 B4 CR CR 8/17/1998 NA NA NA <NA>
## 4 04006 4006 7/17/1997 M 38 B1 CR CR 9/8/1997 TRUE FALSE FALSE t(4;11)
## 5 04007 4007 7/22/1997 M 57 B2 CR CR 9/17/1997 FALSE FALSE FALSE del(6q)
## 6 04008 4008 7/30/1997 M 17 B1 CR CR 9/27/1997 FALSE FALSE FALSE complex alt.
## mol.biol fusion.protein mdr kinet ccr relapse transplant f.u date.last.seen
## 1 BCR/ABL p210 NEG dyploid FALSE FALSE TRUE BMT / DEATH IN CR <NA>
## 2 NEG <NA> POS dyploid FALSE TRUE FALSE REL 8/28/2000
## 3 BCR/ABL p190 NEG dyploid FALSE TRUE FALSE REL 10/15/1999
## 4 ALL1/AF4 <NA> NEG dyploid FALSE TRUE FALSE REL 1/23/1998
## 5 NEG <NA> NEG dyploid FALSE TRUE FALSE REL 11/4/1997
## 6 NEG <NA> NEG hyperd. FALSE TRUE FALSE REL 12/15/1997
summary(pdata$sex)
## F M NA's
## 42 83 3
summary(pdata$cyto.normal)
## Mode FALSE TRUE NA's
## logical 69 24 35
Remind yourselves about various ways to subset and access columns of a data.frame
pdata[1:5, 3:4]
## diagnosis sex
## 1 5/21/1997 M
## 2 3/29/2000 M
## 3 6/24/1998 F
## 4 7/17/1997 M
## 5 7/22/1997 M
pdata[1:5, ]
## X cod diagnosis sex age BT remission CR date.cr t.4.11. t.9.22. cyto.normal citog
## 1 01005 1005 5/21/1997 M 53 B2 CR CR 8/6/1997 FALSE TRUE FALSE t(9;22)
## 2 01010 1010 3/29/2000 M 19 B2 CR CR 6/27/2000 FALSE FALSE FALSE simple alt.
## 3 03002 3002 6/24/1998 F 52 B4 CR CR 8/17/1998 NA NA NA <NA>
## 4 04006 4006 7/17/1997 M 38 B1 CR CR 9/8/1997 TRUE FALSE FALSE t(4;11)
## 5 04007 4007 7/22/1997 M 57 B2 CR CR 9/17/1997 FALSE FALSE FALSE del(6q)
## mol.biol fusion.protein mdr kinet ccr relapse transplant f.u date.last.seen
## 1 BCR/ABL p210 NEG dyploid FALSE FALSE TRUE BMT / DEATH IN CR <NA>
## 2 NEG <NA> POS dyploid FALSE TRUE FALSE REL 8/28/2000
## 3 BCR/ABL p190 NEG dyploid FALSE TRUE FALSE REL 10/15/1999
## 4 ALL1/AF4 <NA> NEG dyploid FALSE TRUE FALSE REL 1/23/1998
## 5 NEG <NA> NEG dyploid FALSE TRUE FALSE REL 11/4/1997
head(pdata[, 3:5])
## diagnosis sex age
## 1 5/21/1997 M 53
## 2 3/29/2000 M 19
## 3 6/24/1998 F 52
## 4 7/17/1997 M 38
## 5 7/22/1997 M 57
## 6 7/30/1997 M 17
tail(pdata[, 3:5], 3)
## diagnosis sex age
## 126 3/27/1998 M 30
## 127 10/23/1998 M 29
## 128 <NA> <NA> NA
head(pdata$age)
## [1] 53 19 52 38 57 17
head(pdata$sex)
## [1] M M F M M M
## Levels: F M
head(pdata[pdata$age > 21,])
## X cod diagnosis sex age BT remission CR date.cr t.4.11. t.9.22. cyto.normal citog
## 1 01005 1005 5/21/1997 M 53 B2 CR CR 8/6/1997 FALSE TRUE FALSE t(9;22)
## 3 03002 3002 6/24/1998 F 52 B4 CR CR 8/17/1998 NA NA NA <NA>
## 4 04006 4006 7/17/1997 M 38 B1 CR CR 9/8/1997 TRUE FALSE FALSE t(4;11)
## 5 04007 4007 7/22/1997 M 57 B2 CR CR 9/17/1997 FALSE FALSE FALSE del(6q)
## 10 08001 8001 1/15/1997 M 40 B2 CR CR 3/26/1997 FALSE FALSE FALSE del(p15)
## 11 08011 8011 8/21/1998 M 33 B3 CR CR 10/8/1998 FALSE FALSE FALSE del(p15/p16)
## mol.biol fusion.protein mdr kinet ccr relapse transplant f.u date.last.seen
## 1 BCR/ABL p210 NEG dyploid FALSE FALSE TRUE BMT / DEATH IN CR <NA>
## 3 BCR/ABL p190 NEG dyploid FALSE TRUE FALSE REL 10/15/1999
## 4 ALL1/AF4 <NA> NEG dyploid FALSE TRUE FALSE REL 1/23/1998
## 5 NEG <NA> NEG dyploid FALSE TRUE FALSE REL 11/4/1997
## 10 BCR/ABL p190 NEG <NA> FALSE TRUE FALSE REL 7/11/1997
## 11 BCR/ABL p190/p210 NEG dyploid FALSE FALSE TRUE BMT / DEATH IN CR <NA>
It seems from below that there are 17 females over 40 in the data set. However, some individuals have NA
for the age and / or sex, and these NA
values propagate through some computations. Use table()
to summarize the number of females over 40, and the number of samples for which this classification cannot be determined. When R encounters an NA
value in a subscript index, it introduces an NA
into the result. Observe this (rows of NA
values introduced into the result) when subsetting using [
versus using the subset()
function.
idx <- pdata$sex == "F" & pdata$age > 40
table(idx, useNA="ifany")
## idx
## FALSE TRUE <NA>
## 108 17 3
dim(pdata[idx,]) # WARNING: 'NA' rows introduced
## [1] 20 22
tail(pdata[idx,])
## X cod diagnosis sex age BT remission CR date.cr t.4.11. t.9.22.
## 83 49006 49006 8/12/1998 F 43 B2 CR CR 11/19/1998 NA NA
## 84 57001 57001 1/29/1997 F 53 B3 <NA> DEATH IN INDUCTION <NA> FALSE FALSE
## 85 62001 62001 11/11/1997 F 50 B4 REF REF <NA> FALSE TRUE
## NA.1 <NA> <NA> <NA> <NA> NA <NA> <NA> <NA> <NA> NA NA
## 98 02020 2020 3/23/2000 F 48 T2 <NA> DEATH IN INDUCTION <NA> FALSE FALSE
## NA.2 <NA> <NA> <NA> <NA> NA <NA> <NA> <NA> <NA> NA NA
## cyto.normal citog mol.biol fusion.protein mdr kinet ccr relapse transplant f.u
## 83 NA <NA> BCR/ABL p210 NEG dyploid FALSE TRUE FALSE REL
## 84 TRUE normal NEG <NA> NEG hyperd. NA NA NA <NA>
## 85 FALSE t(9;22)+other BCR/ABL <NA> NEG hyperd. NA NA NA <NA>
## NA.1 NA <NA> <NA> <NA> <NA> <NA> NA NA NA <NA>
## 98 FALSE complex alt. NEG <NA> NEG dyploid NA NA NA <NA>
## NA.2 NA <NA> <NA> <NA> <NA> <NA> NA NA NA <NA>
## date.last.seen
## 83 4/26/1999
## 84 <NA>
## 85 <NA>
## NA.1 <NA>
## 98 <NA>
## NA.2 <NA>
dim(subset(pdata, idx)) # BETTER: no NA rows
## [1] 17 22
tail(subset(pdata,idx))
## X cod diagnosis sex age BT remission CR date.cr t.4.11. t.9.22.
## 63 28032 28032 9/26/1998 F 52 B1 CR CR 10/30/1998 TRUE FALSE
## 71 30001 30001 1/16/1997 F 54 B3 <NA> DEATH IN INDUCTION <NA> FALSE TRUE
## 83 49006 49006 8/12/1998 F 43 B2 CR CR 11/19/1998 NA NA
## 84 57001 57001 1/29/1997 F 53 B3 <NA> DEATH IN INDUCTION <NA> FALSE FALSE
## 85 62001 62001 11/11/1997 F 50 B4 REF REF <NA> FALSE TRUE
## 98 02020 2020 3/23/2000 F 48 T2 <NA> DEATH IN INDUCTION <NA> FALSE FALSE
## cyto.normal citog mol.biol fusion.protein mdr kinet ccr relapse transplant f.u
## 63 FALSE t(4;11) ALL1/AF4 <NA> NEG dyploid TRUE FALSE FALSE CCR
## 71 FALSE t(9;22)+other BCR/ABL p190 NEG hyperd. NA NA NA <NA>
## 83 NA <NA> BCR/ABL p210 NEG dyploid FALSE TRUE FALSE REL
## 84 TRUE normal NEG <NA> NEG hyperd. NA NA NA <NA>
## 85 FALSE t(9;22)+other BCR/ABL <NA> NEG hyperd. NA NA NA <NA>
## 98 FALSE complex alt. NEG <NA> NEG dyploid NA NA NA <NA>
## date.last.seen
## 63 5/16/2002
## 71 <NA>
## 83 4/26/1999
## 84 <NA>
## 85 <NA>
## 98 <NA>
## work-around for `[`: set NA values to FALSE
idx[is.na(idx)] <- FALSE
dim(pdata[idx,])
## [1] 17 22
Use the mol.biol
column to subset the data to contain just individuals with ‘BCR/ABL’ or ‘NEG’, e.g.,
bcrabl <- pdata[pdata$mol.biol %in% c("BCR/ABL", "NEG"),]
The mol.biol
column is a factor, and retains all levels even after subsetting. It is sometimes convenient to retain factor levels, but in our case we use droplevels()
to removed unused levels
bcrabl$mol.biol <- droplevels(bcrabl$mol.biol)
The BT
column is a factor describing B- and T-cell subtypes
levels(bcrabl$BT)
## [1] "B" "B1" "B2" "B3" "B4" "T" "T1" "T2" "T3" "T4"
How might one collapse B1, B2, … to a single type B, and likewise for T1, T2, …, so there are only two subtypes, B and T? One strategy is to replace two-letter level (e.g., B1
) with the single-letter level (e.g., B
). Do this using substring()
to select the first letter of level, and update the previous levels with the new value using levels<-
.
table(bcrabl$BT)
##
## B B1 B2 B3 B4 T T1 T2 T3 T4
## 4 9 35 22 9 5 1 15 9 2
levels(bcrabl$BT) <- substring(levels(bcrabl$BT), 1, 1)
table(bcrabl$BT)
##
## B T
## 79 32
Use xtabs()
(cross-tabulation) to count the number of samples with B- and T-cell types in each of the BCR/ABL and NEG groups
xtabs(~ BT + mol.biol, bcrabl)
## mol.biol
## BT BCR/ABL NEG
## B 37 42
## T 0 32
Use aggregate()
to calculate the average age of males and females in the BCR/ABL and NEG treatment groups.
aggregate(age ~ mol.biol + sex, bcrabl, mean)
## mol.biol sex age
## 1 BCR/ABL F 39.93750
## 2 NEG F 30.42105
## 3 BCR/ABL M 40.50000
## 4 NEG M 27.21154
Use t.test()
to compare the age of individuals in the BCR/ABL versus NEG groups; visualize the results using boxplot()
. In both cases, use the formula
interface. Consult the help page ?t.test
and re-do the test assuming that variance of ages in the two groups is identical. What parts of the test output change?
t.test(age ~ mol.biol, bcrabl)
##
## Welch Two Sample t-test
##
## data: age by mol.biol
## t = 4.8172, df = 68.529, p-value = 8.401e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.13507 17.22408
## sample estimates:
## mean in group BCR/ABL mean in group NEG
## 40.25000 28.07042
boxplot(age ~ mol.biol, bcrabl)