```{r setup, echo=FALSE}
library(UseBioconductor)
stopifnot(BiocInstaller::biocVersion() == "3.1")
```
```{r style, echo = FALSE, results = 'asis'}
BiocStyle::markdown()
```
# Annotating Genes, Genomes, and Variants
Martin Morgan
February 4, 2014
```{r pkgs, eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE}
options(max.print=1000)
suppressPackageStartupMessages({
library(org.Hs.eg.db)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)
library(GenomicRanges)
library(biomaRt)
library(rtracklayer)
})
```
## Gene annotation
### Data packages
Organism-level ('org') packages contain mappings between a central
identifier (e.g., Entrez gene ids) and other identifiers (e.g. GenBank
or Uniprot accession number, RefSeq id, etc.). The name of an org
package is always of the form `org...db`
(e.g. [org.Sc.sgd.db][]) where `` is a 2-letter abbreviation of
the organism (e.g. `Sc` for *Saccharomyces cerevisiae*) and `` is
an abbreviation (in lower-case) describing the type of central
identifier (e.g. `sgd` for gene identifiers assigned by the
*Saccharomyces* Genome Database, or `eg` for Entrez gene ids). The
"How to use the '.db' annotation packages" vignette in the
[AnnotationDbi][] package (org packages are only one type of ".db"
annotation packages) is a key reference. The '.db' and most other
Bioconductor annotation packages are updated every 6 months.
Annotation packages usually contain an object named after the package
itself. These objects are collectively called `AnnotationDb` objects,
with more specific classes named `OrgDb`, `ChipDb` or `TranscriptDb`
objects. Methods that can be applied to these objects include
`cols()`, `keys()`, `keytypes()` and `select()`. Common operations
for retrieving annotations are summarized in the table.
| Category | Function | Description |
|------------|---------------------------------------|------------------------------------------------------------------|
| Discover | `columns()` | List the kinds of columns that can be returned |
| | `keytypes()` | List columns that can be used as keys |
| | `keys()` | List values that can be expected for a given keytype |
| | `select()` | Retrieve annotations matching `keys`, `keytype` and `columns` |
| Manipulate | `setdiff()`, `union()`, `intersect()` | Operations on sets |
| | `duplicated()`, `unique()` | Mark or remove duplicates |
| | `%in%`, `match()` | Find matches |
| | `any()`, `all()` | Are any `TRUE`? Are all? |
| | `merge()` | Combine two different \Robject{data.frames} based on shared keys |
| `GRanges*` | `transcripts()`, `exons()`, `cds()` | Features (transcripts, exons, coding sequence) as `GRanges`. |
| | `transcriptsBy()` , `exonsBy()` | Features group by gene, transcript, etc., as `GRangesList`. |
| | `cdsBy()` | |
**Exercise**: This exercise illustrates basic use of the `select'
interface to annotation packages.
1. What is the name of the org package for *Homo sapiens*? Load it.
Display the `OrgDb` object for the [org.Hs.eg.db][] package. Use
the `columns()` method to discover which sorts of annotations can
be extracted from it.
2. Use the `keys()` method to extract ENSEMBL identifiers and then
pass those keys in to the `select()` method in such a way that you
extract the SYMBOL (gene symbol) and GENENAME information for
each. Use the following ENSEMBL ids.
```{r select-setup}
ensids <- c("ENSG00000130720", "ENSG00000103257", "ENSG00000156414",
"ENSG00000144644", "ENSG00000159307", "ENSG00000144485")
```
**Solution** The `OrgDb` object is named `org.Hs.eg.db`.
```{r select}
library(org.Hs.eg.db)
keytypes(org.Hs.eg.db)
columns(org.Hs.eg.db)
cols <- c("SYMBOL", "GENENAME")
select(org.Hs.eg.db, keys=ensids, columns=cols, keytype="ENSEMBL")
```
### Internet resources
A short summary of select Bioconductor packages enabling web-based
queries is in following Table.
| Package | Description |
|-----------------------------------------------------|-------------------------------------------|
| [AnnotationHub][] | Ensembl, Encode, dbSNP, UCSC data objects |
| [biomaRt](http://biomart.org) | Ensembl and other annotations |
| [PSICQUIC](https://code.google.com/p/psicquic) | Protein interactions |
| [uniprot.ws](http://uniprot.org) | Protein annotations |
| [KEGGREST](http://www.genome.jp/kegg) | KEGG pathways |
| [SRAdb](http://www.ncbi.nlm.nih.gov/sra) | Sequencing experiments. |
| [rtracklayer](http://genome.ucsc.edu) | genome tracks. |
| [GEOquery](http://www.ncbi.nlm.nih.gov/geo/) | Array and other data |
| [ArrayExpress](http://www.ebi.ac.uk/arrayexpress/) | Array and other data |
*Using biomaRt*
The [biomaRt][] package offers access to the online
[biomart](http://www.biomart.org) resource. this consists of several
data base resources, referred to as 'marts'. Each mart allows access
to multiple data sets; the [biomaRt][] package provides methods for
mart and data set discovery, and a standard method `getBM()` to
retrieve data.
*Exercise*
1. Load the [biomaRt][] package and list the available marts. Choose
the *ensembl* mart and list the datasets for that mart. Set up a
mart to use the *ensembl* mart and the *hsapiens gene ensembl*
dataset.
2. A [biomaRt][] dataset can be accessed via `getBM()`. In addition to
the mart to be accessed, this function takes filters and attributes
as arguments. Use `filterOptions()` and `listAttributes()` to
discover values for these arguments. Call `getBM()` using filters
and attributes of your choosing.
*Solution*
```{r biomaRt1, eval=FALSE, results="hide"}
## NEEDS INTERNET ACCESS !!
library(biomaRt)
head(listMarts(), 3) ## list the marts
head(listDatasets(useMart("ensembl")), 3) ## mart datasets
ensembl <- ## fully specified mart
useMart("ensembl", dataset = "hsapiens_gene_ensembl")
head(listFilters(ensembl), 3) ## filters
myFilter <- "chromosome_name"
substr(filterOptions(myFilter, ensembl), 1, 50) ## return values
myValues <- c("21", "22")
head(listAttributes(ensembl), 3) ## attributes
myAttributes <- c("ensembl_gene_id","chromosome_name")
## assemble and query the mart
res <- getBM(attributes = myAttributes, filters = myFilter,
values = myValues, mart = ensembl)
```
*Exercise*
As an optional exercise, annotate the genes that are differentially
expressed in the DESeq2 laboratory, e.g., find the \texttt{GENENAME}
associated with the five most differentially expressed genes. Do these
make biological sense? Can you `merge()` the annotation results with
the `top table' results to provide a statistically and biologically
informative summary?
## Genome annotation
There are a diversity of packages and classes available for
representing large genomes. Several include:
- 'TxDb.*' For transcript and other genome / coordinate annotation.
- [BSgenome][] For whole-genome representation. See
`available.packages()` for pre-packaged genomes, and the vignette
'How to forge a BSgenome data package' in the
- [Homo.sapiens][] For integrating 'TxDb*' and 'org.*' packages.
- 'SNPlocs.*' For model organism SNP locations derived from dbSNP.
- `FaFile()` ([Rsamtools][]) for accessing indexed FASTA files.
- 'SIFT.*', 'PolyPhen', 'ensemblVEP' Variant effect scores.
### Transcript annotation packages
Genome-centric packages are very useful for annotations involving
genomic coordinates. It is straight-forward, for instance, to discover
the coordinates of coding sequences in regions of interest, and from
these retrieve corresponding DNA or protein coding sequences. Other
examples of the types of operations that are easy to perform with
genome-centric annotations include defining regions of interest for
counting aligned reads in RNA-seq experiments and retrieving DNA
sequences underlying regions of interest in ChIP-seq analysis, e.g.,
for motif characterization.
*Exercise*
This exercise uses annotation resources to go from a gene symbol
'BRCA1' through to the genomic coordinates of each transcript
associated with the gene, and finally to the DNA sequences of the
transcripts.
1. Use the [org.Hs.eg.db][] package to map from the gene symbol
'BRCA1' to its Entrez identifier. Do this using the `select`
command.
2. Use the [TxDb.Hsapiens.UCSC.hg19.knownGene][] package to retrieve
the transcript names (`TXNAME`) corresponding to the BRCA1 Entrez
identifier. (The 'org\*' packages are based on information from
NCBI, where Entrez identifiers are labeled ENTREZID; the 'TxDb*'
package we are using is from UCSC, where Entrez identifiers are
labeled GENEID).
3. Use the `cdsBy()` function to retrieve the genomic coordinates of
all coding sequences grouped by transcript, and select the
transcripts corresponding to the identifiers we're interested
in. The coding sequences are returned as an `GRangesList`, where
each element of the list is a `GRanges` object representing the
exons in the coding sequence. As a sanity check, ensure that the
sum of the widths of the exons in each coding sequence is evenly
divisible by 3 (the R 'modulus' operator `%%` returns the remainder
of the division of one number by another, and might be helpful in
this case).
4. Visualize the transcripts in genomic coordinates using the [Gviz][]
package to construct an `AnnotationTrack`, and plotting it using
`plotTracks()`.
5. Use the [Bsgenome.Hsapiens.UCSC.hg19][] package and
`extractTranscriptSeqs()` function to extract the DNA sequence of
each transcript.
*Solution*
Retrieve the Entrez identifier corresponding to the BRCA1 gene symbol
```{r symbol-to-entrez}
library(org.Hs.eg.db)
eid <- select(org.Hs.eg.db, "BRCA1", "ENTREZID", "SYMBOL")[["ENTREZID"]]
```
Map from Entrez gene identifier to transcript name
```{r entrez-to-tx, messages=FALSE}
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
txid <- select(txdb, eid, "TXNAME", "GENEID")[["TXNAME"]]
```
Retrieve all coding sequences grouped by transcript, and select those
matching the transcript ids of interest, verifying that each coding
sequence width is a multiple of 3
```{r tx-to-cds-coords}
cds <- cdsBy(txdb, by="tx", use.names=TRUE)
brca1cds <- cds[names(cds) %in% txid]
class(brca1cds)
length(brca1cds)
brca1cds[[1]] # exons in cds
cdswidth <- width(brca1cds) # width of each exon
all((sum(cdswidth) %% 3) == 0) # sum within cds, modulus 3
```
Visualize the BRCA1 transcripts using [Gviz][] (this package has an
excellent vignette, `vignette("Gviz")`)
```{r Gviz, message=FALSE}
require(Gviz)
anno <- AnnotationTrack(brca1cds)
plotTracks(list(GenomeAxisTrack(), anno))
```
Extract the coding sequences of each transcript
```{r cds-to-seq}
library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19
tx_seq <- extractTranscriptSeqs(genome, brca1cds)
tx_seq
```
Intron coordinates can be identified by first calculating the range of
the genome (from the start of the first exon to the end of the last
exon) covered by each transcript, and then taking the (algebraic) set
difference between this and the genomic coordinates covered by each
exon
```{r introns}
introns <- psetdiff(range(brca1cds), brca1cds)
```
Retrieve the intronic sequences with `getSeq()` (these are *not*
assembled, the way that `extractTranscriptSeqs()` assembles exon
sequences into mature transcripts); note that introns start and end
with the appropriate acceptor and donor site sequences.
```{r intron-seqs}
seq <- getSeq(genome, introns)
names(seq)
seq[["uc010whl.2"]] # 21 introns
```
### [rtracklayer][]
The [rtracklayer][] package allows us to query the UCSC genome
browser, as well as providing `import()` and
`export()` functions for common annotation file formats like
GFF, GTF, and BED.
*Exercise*
Here we use [rtracklayer][] to retrieve estrogen receptor
binding sites identified across cell lines in the ENCODE project. We
focus on binding sites in the vicinity of a particularly interesting
region of interest.
1. Define our region of interest by creating a `GRanges` instance with
appropriate genomic coordinates. Our region corresponds to 10Mb up-
and down-stream of a particular gene.
2. Create a session for the UCSC genome browser
3. Query the UCSC genome browser for ENCODE estrogen receptor
ERalpha$_a$ transcription marks; identifying the appropriate track,
table, and transcription factor requires biological knowledge and
detective work.
4. Visualize the location of the binding sites and their scores;
annotate the mid-point of the region of interest.
*Solution*
Define the region of interest
```{r rtracklayer-roi}
library(GenomicRanges)
roi <- GRanges("chr10", IRanges(92106877, 112106876, names="ENSG00000099194"))
```
Create a session
```{r rtracklayer-session}
library(rtracklayer)
session <- browserSession()
```
Query the UCSC for a particular track, table, and transcription
factor, in our region of interest
```{r rtracklayer-marks}
trackName <- "wgEncodeRegTfbsClusteredV2"
tableName <- "wgEncodeRegTfbsClusteredV2"
trFactor <- "ERalpha_a"
ucscTable <- getTable(ucscTableQuery(session, track=trackName,
range=roi, table=tableName, name=trFactor))
```
Visualize the result
```{r rtracklayer-plot, fig.height=3}
plot(score ~ chromStart, ucscTable, pch="+")
abline(v=start(roi) + (end(roi) - start(roi) + 1) / 2, col="blue")
```
## Variants
Follow the
[Variants](http://bioconductor.org/help/workflows/variants/) work
flow.
## AnnotationHub
Example 1:
- Coordinate mappping using chain files and
[`liftOver()`](http://bioconductor.org/help/newsletters/2015_January/#coordinate-mapping)
Example 2:
- `grasp2db` package (under development)
```{r grasp2db, eval=FALSE}
library(grasp2db) # Annotation package,
# 6 Gb AnnotationHub resource
d <- GRASP2() # dplyr instance
hispanic <- tbl(d, "count") %>%
filter(Population=="Hispanic")
semi_join(tbl(d, "variant"), hispanic)
```
## Data base access (advanced)
- _Bioconductor_ annotation packages are based on _sqlite_ databases.
- `r CRANpkg("dplyr")` provides convenient access via `src_sqlite`,
`tbl`, `filter`, `arrange`, `summarize`, etc.
Exercise: use `AnnotationDbi::dbfile()` on a TxDb object `gene` table
to filter just those genes on chr3. Pipe this select to
`makeGRangesFromDataFrame` to get a `GRanges` instance.
## Web resources (advanced)
'Easy' to write web-based services, e.g., to query ENSEMBL
[REST](http://rest.ensembl.org/) API
```{r REST, eval=FALSE}
library(httr)
.SERVER <- "http://rest.ensembl.org"
.get <-
function(endpoint, parameters=list(), server=.SERVER)
{
parameters <-
paste(names(parameters), unname(parameters), sep="=", collapse="&")
url <- sprintf("%s%s%s%s", server, endpoint,
ifelse(missing(parameters), "", "?"),
parameters)
response <- GET(url)
stop_for_status(response)
content(response)
}
.jsonlist2data.frame <-
function(lst)
{
as.data.frame(t(simplify2array(lst)))
}
```
Examples:
- Is the service alive?
```{r ensembl-ping, eval=FALSE}
.get('/info/ping')$ping
```
- Symbol -> ENSG identifier mapping
```{r ensembl-mapping, eval=FALSE}
species <- "human"; symbol <- "BRAF"
endpoint <- sprintf("/xrefs/symbol/%s/%s", species, symbol)
parameters <- c(object_type="gene")
.get(endpoint, parameters)
```
- Range-based query
```{r ensembl-ranges, eval=FALSE}
endpoint <- "/overlap/region/human/7:140424943-140624564"
parameters <- c(feature="cds", logic_name="havana")
olaps <- .get(endpoint, parameters)
.jsonlist2data.frame(olaps)
```
- Available taxa
```{r ensembl-species, eval=FALSE}
species <- .get("/info/species")
species1 <- lapply(species[[1]], "[", names(species[[1]][[1]])[c(1:7, 10)])
.jsonlist2data.frame(species1)
```
[AnnotationHub]:
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
[BSgenome]:
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
[Bsgenome.Hsapiens.UCSC.hg19]:
http://bioconductor.org/packages/release/data/annotation/html/Bsgenome.Hsapiens.UCSC.hg19.html
[Homo.sapiens]:
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
[Rsamtools]:
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
[TxDb.Hsapiens.UCSC.hg19.knownGene]:
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
[biomaRt]:
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
[org.Hs.eg.db]:
http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
[org.Sc.sgd.db]:
http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
[rtracklayer]:
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html