Martin Morgan
February 2, 2015
Data movement
Input & manipulation: Biostrings
>NM_078863_up_2000_chr2L_16764737_f chr2L:16764737-16766736
gttggtggcccaccagtgccaaaatacacaagaagaagaaacagcatctt
gacactaaaatgcaaaaattgctttgcgtcaatgactcaaaacgaaaatg
...
atgggtatcaagttgccccgtataaaaggcaagtttaccggttgcacggt
>NM_001201794_up_2000_chr2L_8382455_f chr2L:8382455-8384454
ttatttatgtaggcgcccgttcccgcagccaaagcactcagaattccggg
cgtgtagcgcaacgaccatctacaaggcaatattttgatcgcttgttagg
...
Whole genomes: 2bit
and .fa
formats: rtracklayer,
Rsamtools; BSgenome
Input & manipulation: ShortRead readFastq()
, FastqStreamer()
,
FastqSampler()
@ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1
CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT
+
HHGHHGHHHHHHHHDGG<GDGGE@GDGGD<?B8??ADAD<BE@EE8EGDGA3CB85*,77@>>CE?=896=:
@ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1
GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC
+
DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?########################
Input & manipulation: 'low-level' Rsamtools, scanBam()
,
BamFile()
; 'high-level' GenomicAlignments
Header
@HD VN:1.0 SO:coordinate
@SQ SN:chr1 LN:249250621
@SQ SN:chr10 LN:135534747
@SQ SN:chr11 LN:135006516
...
@SQ SN:chrY LN:59373566
@PG ID:TopHat VN:2.0.8b CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastq
Alignments: ID, flag, alignment and mate
ERR127306.7941162 403 chr14 19653689 3 72M = 19652348 -1413 ...
ERR127306.22648137 145 chr14 19653692 1 72M = 19650044 -3720 ...
ERR127306.933914 339 chr14 19653707 1 66M120N6M = 19653686 -213 ...
ERR127306.11052450 83 chr14 19653707 3 66M120N6M = 19652348 -1551 ...
ERR127306.24611331 147 chr14 19653708 1 65M120N7M = 19653675 -225 ...
ERR127306.2698854 419 chr14 19653717 0 56M120N16M = 19653935 290 ...
ERR127306.2698854 163 chr14 19653717 0 56M120N16M = 19653935 2019 ...
Alignments: sequence and quality
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT '******&%)&)))&")')'')'*((******&)&'')'))$))'')&))$)**&&****************
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT ##&&(#')$')'%&&#)%$#$%"%###&!%))'%%''%'))&))#)&%((%())))%)%)))%*********
... GAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTT )&$'$'$%!&&%&&#!'%'))%''&%'&))))''$""'%'%&%'#'%'"!'')#&)))))%$)%)&'"')))
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
Alignments: Tags
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:2 CC:Z:chr22 CP:i:16189276 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:3 CC:Z:= CP:i:19921600 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921465 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:2 CC:Z:chr22 CP:i:16189138 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:5 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921464 HI:i:0
... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19653717 HI:i:0
... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19921455 HI:i:1
Input and manipulation: VariantAnnotation readVcf()
,
readInfo()
, readGeno()
selectively with ScanVcfParam()
.
Header
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
...
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
...
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
Location
#CHROM POS ID REF ALT QUAL FILTER ...
20 14370 rs6054257 G A 29 PASS ...
20 17330 . T A 3 q10 ...
20 1110696 rs6040355 A G,T 67 PASS ...
20 1230237 . T . 47 PASS ...
20 1234567 microsat1 GTC G,GTCT 50 PASS ...
Variant INFO
#CHROM POS ... INFO ...
20 14370 ... NS=3;DP=14;AF=0.5;DB;H2 ...
20 17330 ... NS=3;DP=11;AF=0.017 ...
20 1110696 ... NS=2;DP=10;AF=0.333,0.667;AA=T;DB ...
20 1230237 ... NS=3;DP=13;AA=T ...
20 1234567 ... NS=3;DP=9;AA=G ...
Genotype FORMAT and samples
... POS ... FORMAT NA00001 NA00002 NA00003
... 14370 ... GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
... 17330 ... GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
... 1110696 ... GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
... 1230237 ... GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
... 1234567 ... GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
Input: rtracklayer import()
GTF: gene model
Component coordinates
7 protein_coding gene 27221129 27224842 . - . ...
...
7 protein_coding transcript 27221134 27224835 . - . ...
7 protein_coding exon 27224055 27224835 . - . ...
7 protein_coding CDS 27224055 27224763 . - 0 ...
7 protein_coding start_codon 27224761 27224763 . - 0 ...
7 protein_coding exon 27221134 27222647 . - . ...
7 protein_coding CDS 27222418 27222647 . - 2 ...
7 protein_coding stop_codon 27222415 27222417 . - 0 ...
7 protein_coding UTR 27224764 27224835 . - . ...
7 protein_coding UTR 27221134 27222414 . - . ...
Annotations
gene_id "ENSG00000005073"; gene_name "HOXA11"; gene_source "ensembl_havana"; gene_biotype "protein_coding";
...
... transcript_id "ENST00000006015"; transcript_name "HOXA11-001"; transcript_source "ensembl_havana"; tag "CCDS"; ccds_id "CCDS5411";
... exon_number "1"; exon_id "ENSE00001147062";
... exon_number "1"; protein_id "ENSP00000006015";
... exon_number "1";
... exon_number "2"; exon_id "ENSE00002099557";
... exon_number "2"; protein_id "ENSP00000006015";
... exon_number "2";
...
Biostrings classes for DNA or amino acid sequences
Methods
reverseComplement()
letterFrequency()
matchPDict()
, matchPWM()
Related packages
FaFile
class for indexed on-disk representationTwoBitFile
) class for indexed
on-disk representationExample
BSgenome
packages. The following
calculates GC content across chr14.suppressPackageStartupMessages({
library(BSgenome.Hsapiens.UCSC.hg19)
})
chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
chr14_dna <- getSeq(Hsapiens, chr14_range)
letterFrequency(chr14_dna, "GC", as.prob=TRUE)
## G|C
## [1,] 0.336276
Ranges represent:
Many common biological questions are range-based
The GenomicRanges package defines essential classes and methods
GRanges
GRangesList
Ranges
start()
/ end()
/ width()
length()
, subset, etc.mcols()
Seqinfo
, including seqlevels
and seqlengths
Intra-range methods
shift()
, narrow()
, flank()
, promoters()
, resize()
,
restrict()
, trim()
?"intra-range-methods"
Inter-range methods
range()
, reduce()
, gaps()
, disjoin()
coverage()
(!)?"inter-range-methods"
Between-range methods
findOverlaps()
, countOverlaps()
, …, %over%
, %within%
,
%outside%
; union()
, intersect()
, setdiff()
, punion()
,
pintersect()
, psetdiff()
Example
suppressPackageStartupMessages({
library(GenomicRanges)
})
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1) # 1-based coordinates!
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [11, 15] +
## [2] A [21, 25] +
## [3] A [23, 27] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
range(gr) # intra-range
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [10, 26] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
reduce(gr) # inter-range
## GRanges object with 2 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [10, 14] +
## [2] A [20, 26] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
coverage(gr)
## RleList of length 1
## $A
## integer-Rle of length 26 with 6 runs
## Lengths: 9 5 5 2 3 2
## Values : 0 1 0 1 2 1
setdiff(range(gr), gr) # 'introns'
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [15, 19] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
IRangesList, GRangesList
Many *List-aware methods, but a common 'trick': apply a vectorized function to the unlisted representaion, then re-list
grl <- GRangesList(...)
orig_gr <- unlist(grl)
transformed_gr <- FUN(orig)
transformed_grl <- relist(, grl)
Reference
Classes – GenomicRanges-like behaivor
Methods
readGAlignments()
, readGAlignmentsList()
summarizeOverlaps()
Example
suppressPackageStartupMessages({
library(GenomicRanges)
library(GenomicAlignments)
library(Rsamtools)
})
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1))
## sample data
suppressPackageStartupMessages({
library('RNAseqData.HNRNPC.bam.chr14')
})
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
## GAlignmentsList object of length 8:
## [[1]]
## GAlignments object with 2 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## [1] chr14 - 66M120N6M 72 19653707 19653898 192 1
## [2] chr14 + 7M1270N65M 72 19652348 19653689 1342 1
##
## [[2]]
## GAlignments object with 2 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## [1] chr14 - 66M120N6M 72 19653707 19653898 192 1
## [2] chr14 + 72M 72 19653686 19653757 72 0
##
## [[3]]
## GAlignments object with 2 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## [1] chr14 + 72M 72 19653675 19653746 72 0
## [2] chr14 - 65M120N7M 72 19653708 19653899 192 1
##
## ...
## <5 more elements>
## -------
## seqinfo: 93 sequences from an unspecified genome
Classes – GenomicRanges-like behavior
Functions and methods
readVcf()
, readGeno()
, readInfo()
,
readGT()
, writeVcf()
, filterVcf()
locateVariants()
(variants overlapping ranges),
predictCoding()
, summarizeVariants()
genotypeToSnpMatrix()
, snpSummary()
Example
## input variants
suppressPackageStartupMessages({
library(VariantAnnotation)
})
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
seqlevels(vcf) <- "chr22"
## known gene model
suppressPackageStartupMessages({
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
})
coding <- locateVariants(rowData(vcf),
TxDb.Hsapiens.UCSC.hg19.knownGene,
CodingVariants())
head(coding)
## GRanges object with 6 ranges and 9 metadata columns:
## seqnames ranges strand | LOCATION LOCSTART LOCEND
## <Rle> <IRanges> <Rle> | <factor> <integer> <integer>
## 1 chr22 [50301422, 50301422] * | coding 939 939
## 2 chr22 [50301476, 50301476] * | coding 885 885
## 3 chr22 [50301488, 50301488] * | coding 873 873
## 4 chr22 [50301494, 50301494] * | coding 867 867
## 5 chr22 [50301584, 50301584] * | coding 777 777
## 6 chr22 [50302962, 50302962] * | coding 698 698
## QUERYID TXID CDSID GENEID PRECEDEID
## <integer> <character> <IntegerList> <character> <CharacterList>
## 1 24 75253 218562 79087
## 2 25 75253 218562 79087
## 3 26 75253 218562 79087
## 4 27 75253 218562 79087
## 5 28 75253 218562 79087
## 6 57 75253 218563 79087
## FOLLOWID
## <CharacterList>
## 1
## 2
## 3
## 4
## 5
## 6
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Related packages
Reference
This very open-ended topic points to some of the most prominent Bioconductor packages for sequence analysis. Use the opportunity in this lab to explore the package vignettes and help pages highlighted below; many of the material will be covered in greater detail in subsequent labs and lectures.
Basics
A package needs to be installed once, using the instructions on the landing page. Once installed, the package can be loaded into an R session
suppressPackageStartupMessages({
library(GenomicRanges)
})
and the help system queried interactively, as outlined above:
help(package="GenomicRanges")
vignette(package="GenomicRanges")
vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
?GRanges
Domain-specific analysis – explore the landing pages, vignettes, and reference manuals of two or three of the following packages.
Working with sequences, alignments, common web file formats, and raw data; these packages rely very heavily on the IRanges / GenomicRanges infrastructure that we will encounter later in the course.
?consensusMatrix
,
for instance. Also check out the BSgenome package for working
with whole genome sequences, e.g., ?"getSeq,BSgenome-method"
?readGAlignments
help
page and vigentte(package="GenomicAlignments",
"summarizeOverlaps")
import
and export
functions can read in many
common file types, e.g., BED, WIG, GTF, …, in addition to querying
and navigating the UCSC genome browser. Check out the ?import
page
for basic usage.Visualization
fastqc
is a Java program commonly used for summarizing quality of
fastq files. It has a straight-forward graphical user interface. Here
we will use the command-line version.
From within Rstudio, choose 'Tools –> Shell…', or log on to your Amazon machine instance using a Mac / linux terminal or on Windows the PuTTY program.
Run fastqc on sample fastq files, sending the output to the
~/fastqc_report
directory.
fastqc fastq/*fastq --threads 8 --outdir=fastqc_reports
Study the quality report and resulting on-line documentation:
In the Files tab, click on fastqc_reports
. Click on the HTML file
there and then click on “View in Web Browser”.
ShortRead provides similar functionality, but from within R. The following shows that R can handle large data, and illustrates some of the basic ways in which one might interact with functionality provided by a Bioconductor package.
## 1. attach ShortRead and BiocParallel
suppressPackageStartupMessages({
library(ShortRead)
library(BiocParallel)
})
## 2. create a vector of file paths
fls <- dir("~/fastq", pattern="*fastq", full=TRUE)
## 3. collect statistics
stats0 <- qa(fls)
## 4. generate and browse the report
if (interactive())
browseURL(report(stats0))
Check out the qa report from all lanes
data(qa_all)
if (interactive())
browseURL(report(qa_all))
This data is from the airway Bioconductor annotation package; see the vignette for details
Bioconductor: we'll explore how to map between different types of identifiers, how to navigate genomic coordinates, and how to query BAM files for aligned reads.
Attach 'Annotation' packages containing information about gene symbols org.Hs.eg.db and genomic coordinates (e.g., genes, exons, cds, transcripts) TxDb.Hsapiens.UCSC.hg19.knownGene. Arrange for the 'seqlevels' (chromosome names) in the TxDb package to match those in the BAM files.
Use an appropriate org.*
package to map from gene symbol to
Entrez gene id, and the appropriate TxDb.*
package to retrieve
gene coordinates of the SPARCL1 gene. N.B. – The following uses a
single gene symbol, but we could have used 1, 2, or all gene
symbols in a vectorized fashion.
Attach the GenomicAlignments package for working
with aligned reads. Use range()
to get the genomic coordinates
spanning the first and last exon of SPARCL1. Input paired reads
overlapping SPARCL1.
What questions can you easily answer about these alignments? E.g., how many reads overlap this region of interest?
## 1.a 'Annotation' packages
suppressPackageStartupMessages({
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
})
## 1.b -- map 'seqlevels' as recorded in the TxDb file to those in the
## BAM file
fl <- "~/igv/genomes/hg19_alias.tab"
map <- with(read.delim(fl, header=FALSE, stringsAsFactors=FALSE),
setNames(V1, V2))
seqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene, force=TRUE) <- map
## 2. Symbol -> Entrez ID -> Gene coordinates
sym2eg <- select(org.Hs.eg.db, "SPARCL1", "ENTREZID", "SYMBOL")
exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")
sparcl1exons <- exByGn[[sym2eg$ENTREZID]]
## 3. Aligned reads
suppressPackageStartupMessages({
library(GenomicAlignments)
})
fl <- "~/bam/SRR1039508_sorted.bam"
sparcl1gene <- range(sparcl1exons)
param <- ScanBamParam(which=sparcl1gene)
aln <- readGAlignmentPairs(fl, param=param)
As another exercise we ask how many of the reads we've input are compatible with the known gene model. We have to find the transcripts that belong to our gene, and then exons grouped by transcript
## 5.a. exons-by-transcript for our gene of interest
txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID,
"TXID", "GENEID")$TXID
exByTx <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids]
## 5.b compatible alignments
hits <- findCompatibleOverlaps(query=aln, subject=exByTx)
good <- seq_along(aln) %in% queryHits(hits)
table(good)
## good
## FALSE TRUE
## 14 55
Finally, let's go from gene model to protein coding sequence. (a) Extract CDS regions grouped by transcript, select just transcripts we're interested in, (b) attach and then extract the coding sequence from the appropriate reference genome. Translating the coding sequences to proteins.
## reset seqlevels
restoreSeqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene)
## TxDb object:
## # Db type: TxDb
## # Supporting package: GenomicFeatures
## # Data source: UCSC
## # Genome: hg19
## # Organism: Homo sapiens
## # UCSC Table: knownGene
## # Resource URL: http://genome.ucsc.edu/
## # Type of Gene ID: Entrez Gene ID
## # Full dataset: yes
## # miRBase build ID: GRCh37
## # transcript_nrow: 82960
## # exon_nrow: 289969
## # cds_nrow: 237533
## # Db created by: GenomicFeatures package from Bioconductor
## # Creation time: 2014-09-26 11:16:12 -0700 (Fri, 26 Sep 2014)
## # GenomicFeatures version at creation time: 1.17.17
## # RSQLite version at creation time: 0.11.4
## # DBSCHEMAVERSION: 1.0
## a. cds coordinates, grouped by transcript
txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID,
"TXID", "GENEID")$TXID
cdsByTx <- cdsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids]
## b. coding sequence from relevant reference genome
suppressPackageStartupMessages({
library(BSgenome.Hsapiens.UCSC.hg19)
})
dna <- extractTranscriptSeqs(BSgenome.Hsapiens.UCSC.hg19, cdsByTx)
protein <- translate(dna)
Visit the “GenomicRanges HOWTOs” vignette.
browseVignettes("GenomicRanges")
Read section 1, and do exercises 2.2, 2.4, 2.5, 2.8, 2.12, and 2.13. Perhaps select additional topics of particular interest to you.
R / Bioconductor
Publications and presentations
Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8): e1003118. doi: 10.1371/journal.pcbi.1003118
Lawrence, M. 2014. Software for Enabling Genomic Data Analysis. Bioc2014 conference slides.