Author: Martin Morgan (mtmorgan@fredhutch.org)
Date: 7 September, 2015
Back to Workshop Outline
The material in this document requires R version 3.2 and Bioconductor version 3.1
stopifnot(
    getRversion() >= '3.2' && getRversion() < '3.3',
    BiocInstaller::biocVersion() >= "3.1"
)
DESeq2GenomicAlignments::summarizeOverlaps()More extensive material
Starting point
Normalization
Error model
Limited sample size
Multiple testing
Filter genes to exclude from testing using a priori criteria
Three types of information
matrix of counts of reads overlapping regions of interestdata.frame summarizing samples used in the analysisGenomicRanges describing the regions of interestSummarizedExperiment coordinates this information
library("airway")
data(airway)
airway
## class: RangedSummarizedExperiment 
## dim: 64102 8 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## main components of SummarizedExperiment
head(assay(airway))
##                 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003        679        448        873        408       1138       1047        770
## ENSG00000000005          0          0          0          0          0          0          0
## ENSG00000000419        467        515        621        365        587        799        417
## ENSG00000000457        260        211        263        164        245        331        233
## ENSG00000000460         60         55         40         35         78         63         76
## ENSG00000000938          0          0          2          0          1          0          0
##                 SRR1039521
## ENSG00000000003        572
## ENSG00000000005          0
## ENSG00000000419        508
## ENSG00000000457        229
## ENSG00000000460         60
## ENSG00000000938          0
colData(airway)
## DataFrame with 8 rows and 9 columns
##            SampleName     cell      dex    albut        Run avgLength Experiment    Sample
##              <factor> <factor> <factor> <factor>   <factor> <integer>   <factor>  <factor>
## SRR1039508 GSM1275862   N61311    untrt    untrt SRR1039508       126  SRX384345 SRS508568
## SRR1039509 GSM1275863   N61311      trt    untrt SRR1039509       126  SRX384346 SRS508567
## SRR1039512 GSM1275866  N052611    untrt    untrt SRR1039512       126  SRX384349 SRS508571
## SRR1039513 GSM1275867  N052611      trt    untrt SRR1039513        87  SRX384350 SRS508572
## SRR1039516 GSM1275870  N080611    untrt    untrt SRR1039516       120  SRX384353 SRS508575
## SRR1039517 GSM1275871  N080611      trt    untrt SRR1039517       126  SRX384354 SRS508576
## SRR1039520 GSM1275874  N061011    untrt    untrt SRR1039520       101  SRX384357 SRS508579
## SRR1039521 GSM1275875  N061011      trt    untrt SRR1039521        98  SRX384358 SRS508580
##               BioSample
##                <factor>
## SRR1039508 SAMN02422669
## SRR1039509 SAMN02422675
## SRR1039512 SAMN02422678
## SRR1039513 SAMN02422670
## SRR1039516 SAMN02422682
## SRR1039517 SAMN02422673
## SRR1039520 SAMN02422683
## SRR1039521 SAMN02422677
rowRanges(airway)
## GRangesList object of length 64102:
## $ENSG00000000003 
## GRanges object with 17 ranges and 2 metadata columns:
##        seqnames               ranges strand   |   exon_id       exon_name
##           <Rle>            <IRanges>  <Rle>   | <integer>     <character>
##    [1]        X [99883667, 99884983]      -   |    667145 ENSE00001459322
##    [2]        X [99885756, 99885863]      -   |    667146 ENSE00000868868
##    [3]        X [99887482, 99887565]      -   |    667147 ENSE00000401072
##    [4]        X [99887538, 99887565]      -   |    667148 ENSE00001849132
##    [5]        X [99888402, 99888536]      -   |    667149 ENSE00003554016
##    ...      ...                  ...    ... ...       ...             ...
##   [13]        X [99890555, 99890743]      -   |    667156 ENSE00003512331
##   [14]        X [99891188, 99891686]      -   |    667158 ENSE00001886883
##   [15]        X [99891605, 99891803]      -   |    667159 ENSE00001855382
##   [16]        X [99891790, 99892101]      -   |    667160 ENSE00001863395
##   [17]        X [99894942, 99894988]      -   |    667161 ENSE00001828996
## 
## ...
## <64101 more elements>
## -------
## seqinfo: 722 sequences (1 circular) from an unspecified genome
## e.g., coordinated subset to include dex 'trt'  samples
airway[, airway$dex == "trt"]
## class: RangedSummarizedExperiment 
## dim: 64102 4 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## e.g., keep only rows with non-zero counts
airway <- airway[rowSums(assay(airway)) != 0, ]
Add experimental design information to the SummarizedExperiment
library(DESeq2)
dds <- DESeqDataSet(airway, design = ~ cell + dex)
Peform the essential work flow steps
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
dds
## class: DESeqDataSet 
## dim: 33469 8 
## metadata(1): ''
## assays(3): counts mu cooks
## rownames(33469): ENSG00000000003 ENSG00000000419 ... ENSG00000273492 ENSG00000273493
## rowRanges metadata column names(46): baseMean baseVar ... deviance maxCooks
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(10): SampleName cell ... BioSample sizeFactor
Extract results
res <- results(dds)
res
## log2 fold change (MAP): dex untrt vs trt 
## Wald test p-value: dex untrt vs trt 
## DataFrame with 33469 rows and 6 columns
##                    baseMean log2FoldChange      lfcSE       stat       pvalue        padj
##                   <numeric>      <numeric>  <numeric>  <numeric>    <numeric>   <numeric>
## ENSG00000000003 708.6021697     0.37424998 0.09873107  3.7906000 0.0001502838 0.001287304
## ENSG00000000419 520.2979006    -0.20215550 0.10929899 -1.8495642 0.0643763883 0.197080529
## ENSG00000000457 237.1630368    -0.03624826 0.13684258 -0.2648902 0.7910940570 0.914355830
## ENSG00000000460  57.9326331     0.08523370 0.24654400  0.3457140 0.7295576915 0.883713089
## ENSG00000000938   0.3180984     0.11555962 0.14630523  0.7898530 0.4296136448          NA
## ...                     ...            ...        ...        ...          ...         ...
## ENSG00000273487   8.1632350    -0.56331132  0.3736236 -1.5076976    0.1316319   0.3293588
## ENSG00000273488   8.5844790    -0.10805538  0.3684853 -0.2932420    0.7693372   0.9032832
## ENSG00000273489   0.2758994    -0.11282164  0.1424265 -0.7921393    0.4282794          NA
## ENSG00000273492   0.1059784     0.07644378  0.1248627  0.6122225    0.5403906          NA
## ENSG00000273493   0.1061417     0.07628747  0.1250713  0.6099516    0.5418939          NA