Contents

Author: Sonali Arora (sarora@fredhutch.org)
Date: 20-22 July, 2015

The material in this course requires R version 3.2.1 and Bioconductor version 3.2

0.1 Basic lab for Bioconductor

Exercise 1
- How do you download any package from Bioconductor ?
- How do you access the vignettes for a given package ?
- How do you find help for a function (say sortSeqlevels)

Execise 2 : Hone your R skills
The Broad Institute has the EpigenomeRoadMap Project Metadata for the project has been made available for you.
- Read the file into R.
- What does R read it in as ?
- How do you see the first few or last few rows of the dataset ?
- How many rows and columns are there inside this file ?
- What are the column headers ?
- What are the data types of each column ?
- Can you summarize the whole data (Hint: ?summary) Summarize the number of males and females in this dataset. - The column called GROUP contains the source of the sample. Can you subset the data.frame to get all samples belonging to BRAIN and DIGESTIVE

Exercise 3 : Getting Comfortable with GenomicRanges
Using the given GRanges , do the following
- Extract ranges only from chromosome 3
- Extract the first five ranges from the GRanges.
- Extract the score and gc column of the GRanges
- Keep only the standard chromosomes (i.e.) from chromosome 1 to 22, X,Y,M.
- Change the chromosome naming style i.e. this GRanges contains UCSC style of chromosome names, change them to NCBI style of chromosome names.
- How do you find out the ranges contained in the gaps of this GRanges object?
- How do you find out the degree of overlap for all the ranges in a GRanges object ? ( Hint: ?coverage)

library(GenomicRanges)
gr <-
 GRanges(seqnames = paste0("chr", c(1:22, tail(letters, 11))),
 ranges = IRanges(start=1:33, width = 1000 ),
 strand = c(rep("+", 10), rep("-", 23)),
 score = 1:33,
 GC = seq(1, 0, length=33))

Exercise 4: Create and Manipulate a SummarizeExperiment Object
In this small exercise, We have data for 20 genes from 9 highly talented individuals and we will create our first SummarizedExperiment object.

The data for 20 genes from 9 individuals results in a matrix

data <- matrix(1:180, ncol=9,  byrow=TRUE)

The data from the 20 genes can be represented as a GRanges

gr_20gene <-
    GRanges(seqnames = paste0("gene", 1:20),   
    ranges = IRanges(start=1:20, width = 1000 ),  
    strand = c(rep("+", 10), rep("-", 10)),  
    score = 1:20,  
    GC = seq(1, 0, length=20))

The data about the 20 individuals is stored in a data.frame

sample_df <- data.frame( names=c("Martin", "Herve", "Dan",   
    "Marc", "Valerie", "Jim", "Nate","Paul", "Sonali"),   
    sex=c(rep("Male", 4), "Female", rep("Male", 3), "Female"))

0.2 Solutions

Answer 1
If the package we are trying to download is called GenomeInfoDb then

source("http://bioconductor.org/biocLite.R")
biocLite("GenomeInfoDb")

vignette(package="GenomeInfoDb")

?sortSeqlevels

Answer 2

##  Reading the data 
fname <- system.file("extdata", "epi_metadata.txt", package="BioC2015Introduction")
df <- read.delim(fname, stringsAsFactors=FALSE)

##  Exploring the data
class(df) 
## [1] "data.frame"
head(df) 
##    EID    GROUP   COLOR          MNEMONIC                                   STD_NAME
## 1 E001      ESC #924965            ESC.I3                                ES-I3 Cells
## 2 E002      ESC #924965           ESC.WA7                               ES-WA7 Cells
## 3 E003      ESC #924965            ESC.H1                                   H1 Cells
## 4 E004 ES-deriv #4178AE ESDR.H1.BMP4.MESO H1 BMP4 Derived Mesendoderm Cultured Cells
## 5 E005 ES-deriv #4178AE ESDR.H1.BMP4.TROP H1 BMP4 Derived Trophoblast Cultured Cells
## 6 E006 ES-deriv #4178AE       ESDR.H1.MSC          H1 Derived Mesenchymal Stem Cells
##                                   EDACC_NAME     ANATOMY           TYPE AGE    SEX SOLID_LIQUID
## 1                            ES-I3_Cell_Line         ESC PrimaryCulture  CL Female         <NA>
## 2                           ES-WA7_Cell_Line         ESC PrimaryCulture  CL Female         <NA>
## 3                               H1_Cell_Line         ESC PrimaryCulture  CL   Male         <NA>
## 4 H1_BMP4_Derived_Mesendoderm_Cultured_Cells ESC_DERIVED     ESCDerived  CL   Male         <NA>
## 5 H1_BMP4_Derived_Trophoblast_Cultured_Cells ESC_DERIVED     ESCDerived  CL   Male         <NA>
## 6          H1_Derived_Mesenchymal_Stem_Cells ESC_DERIVED     ESCDerived  CL   Male         <NA>
##   ETHNICITY SINGLEDONOR_COMPOSITE
## 1      <NA>                    SD
## 2      <NA>                    SD
## 3      <NA>                    SD
## 4      <NA>                    SD
## 5      <NA>                    SD
## 6      <NA>                    SD
tail(df) 
##      EID      GROUP   COLOR      MNEMONIC                                      STD_NAME
## 122 E124 ENCODE2012 #000000 BLD.CD14.MONO         Monocytes-CD14+ RO01746 Primary Cells
## 123 E125 ENCODE2012 #000000       BRN.NHA                 NH-A Astrocytes Primary Cells
## 124 E126 ENCODE2012 #000000   SKIN.NHDFAD NHDF-Ad Adult Dermal Fibroblast Primary Cells
## 125 E127 ENCODE2012 #000000     SKIN.NHEK     NHEK-Epidermal Keratinocyte Primary Cells
## 126 E128 ENCODE2012 #000000      LNG.NHLF            NHLF Lung Fibroblast Primary Cells
## 127 E129 ENCODE2012 #000000    BONE.OSTEO                      Osteoblast Primary Cells
##                           EDACC_NAME ANATOMY           TYPE AGE     SEX SOLID_LIQUID ETHNICITY
## 122          Monocytes-CD14+_RO01746   BLOOD    PrimaryCell      Female                       
## 123                  NH-A_Astrocytes   BRAIN PrimaryCulture     Unknown                       
## 124 NHDF-Ad_Adult_Dermal_Fibroblasts    SKIN PrimaryCulture      Female                       
## 125     NHEK-Epidermal_Keratinocytes    SKIN PrimaryCulture     Unknown                       
## 126            NHLF_Lung_Fibroblasts    LUNG PrimaryCulture     Unknown                       
## 127                      Osteoblasts    BONE PrimaryCulture     Unknown                       
##     SINGLEDONOR_COMPOSITE
## 122                    SD
## 123                    SD
## 124                    SD
## 125                    SD
## 126                    SD
## 127                    SD
dim(df)
## [1] 127  13
colnames(df)
##  [1] "EID"                   "GROUP"                 "COLOR"                 "MNEMONIC"             
##  [5] "STD_NAME"              "EDACC_NAME"            "ANATOMY"               "TYPE"                 
##  [9] "AGE"                   "SEX"                   "SOLID_LIQUID"          "ETHNICITY"            
## [13] "SINGLEDONOR_COMPOSITE"
sapply(df, class)
##                   EID                 GROUP                 COLOR              MNEMONIC 
##           "character"           "character"           "character"           "character" 
##              STD_NAME            EDACC_NAME               ANATOMY                  TYPE 
##           "character"           "character"           "character"           "character" 
##                   AGE                   SEX          SOLID_LIQUID             ETHNICITY 
##           "character"           "character"           "character"           "character" 
## SINGLEDONOR_COMPOSITE 
##           "character"
## Summarize the data 
summary(df)
##      EID               GROUP              COLOR             MNEMONIC           STD_NAME        
##  Length:127         Length:127         Length:127         Length:127         Length:127        
##  Class :character   Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##   EDACC_NAME          ANATOMY              TYPE               AGE                SEX           
##  Length:127         Length:127         Length:127         Length:127         Length:127        
##  Class :character   Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##  SOLID_LIQUID        ETHNICITY         SINGLEDONOR_COMPOSITE
##  Length:127         Length:127         Length:127           
##  Class :character   Class :character   Class :character     
##  Mode  :character   Mode  :character   Mode  :character
table(df$SEX)
## 
##         Female Female/Unknown           Male   Male/Unknown          Mixed        Unknown 
##             38              1             51              1             12             24
##  Subset the data 
df[df$GROUP %in% c("Brain", "Digestive"),]
##      EID     GROUP   COLOR            MNEMONIC                             STD_NAME
## 65  E067     Brain #C5912B         BRN.ANG.GYR                  Brain Angular Gyrus
## 66  E068     Brain #C5912B        BRN.ANT.CAUD               Brain Anterior Caudate
## 67  E069     Brain #C5912B        BRN.CING.GYR                Brain Cingulate Gyrus
## 68  E070     Brain #C5912B        BRN.GRM.MTRX                Brain Germinal Matrix
## 69  E071     Brain #C5912B        BRN.HIPP.MID             Brain Hippocampus Middle
## 70  E072     Brain #C5912B         BRN.INF.TMP         Brain Inferior Temporal Lobe
## 71  E073     Brain #C5912B BRN.DL.PRFRNTL.CRTX Brain_Dorsolateral_Prefrontal_Cortex
## 72  E074     Brain #C5912B         BRN.SUB.NIG               Brain Substantia Nigra
## 73  E075 Digestive #C58DAA          GI.CLN.MUC                       Colonic Mucosa
## 75  E077 Digestive #C58DAA          GI.DUO.MUC                      Duodenum Mucosa
## 77  E079 Digestive #C58DAA              GI.ESO                            Esophagus
## 79  E081     Brain #C5912B           BRN.FET.M                     Fetal Brain Male
## 80  E082     Brain #C5912B           BRN.FET.F                   Fetal Brain Female
## 82  E084 Digestive #C58DAA        GI.L.INT.FET                Fetal Intestine Large
## 83  E085 Digestive #C58DAA        GI.S.INT.FET                Fetal Intestine Small
## 90  E092 Digestive #C58DAA         GI.STMC.FET                        Fetal Stomach
## 92  E094 Digestive #C58DAA        GI.STMC.GAST                              Gastric
## 99  E101 Digestive #C58DAA      GI.RECT.MUC.29               Rectal Mucosa Donor 29
## 100 E102 Digestive #C58DAA      GI.RECT.MUC.31               Rectal Mucosa Donor 31
## 104 E106 Digestive #C58DAA          GI.CLN.SIG                        Sigmoid Colon
## 107 E109 Digestive #C58DAA            GI.S.INT                      Small Intestine
## 108 E110 Digestive #C58DAA         GI.STMC.MUC                       Stomach Mucosa
##                       EDACC_NAME      ANATOMY          TYPE        AGE          SEX SOLID_LIQUID
## 65           Brain_Angular_Gyrus        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 66        Brain_Anterior_Caudate        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 67         Brain_Cingulate_Gyrus        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 68         Brain_Germinal_Matrix        BRAIN PrimaryTissue       20GW         Male        SOLID
## 69      Brain_Hippocampus_Middle        BRAIN PrimaryTissue   81Y, 73Y         Male        SOLID
## 70  Brain_Inferior_Temporal_Lobe        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 71        Brain_Mid_Frontal_Lobe        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 72        Brain_Substantia_Nigra        BRAIN PrimaryTissue   75Y, 81Y        Mixed        SOLID
## 73                Colonic_Mucosa     GI_COLON PrimaryTissue        73Y       Female        SOLID
## 75               Duodenum_Mucosa  GI_DUODENUM PrimaryTissue        76Y         Male        SOLID
## 77                     Esophagus GI_ESOPHAGUS PrimaryTissue        34Y         Male        SOLID
## 79              Fetal_Brain_Male        BRAIN PrimaryTissue 17GW, 17GW Male/Unknown        SOLID
## 80            Fetal_Brain_Female        BRAIN PrimaryTissue 17GW. 17GW       Female        SOLID
## 82         Fetal_Intestine_Large GI_INTESTINE PrimaryTissue       15GW         Male        SOLID
## 83         Fetal_Intestine_Small GI_INTESTINE PrimaryTissue       15GW         Male        SOLID
## 90                 Fetal_Stomach   GI_STOMACH PrimaryTissue                  Female        SOLID
## 92                       Gastric   GI_STOMACH PrimaryTissue        34Y         Male        SOLID
## 99        Rectal_Mucosa.Donor_29    GI_RECTUM PrimaryTissue        50Y       Female        SOLID
## 100       Rectal_Mucosa.Donor_31    GI_RECTUM PrimaryTissue        61Y       Female        SOLID
## 104                Sigmoid_Colon     GI_COLON PrimaryTissue    3Y, 34Y         Male        SOLID
## 107              Small_Intestine GI_INTESTINE PrimaryTissue    3Y, 34Y         Male        SOLID
## 108               Stomach_Mucosa   GI_STOMACH PrimaryTissue        59Y         Male        SOLID
##                                 ETHNICITY SINGLEDONOR_COMPOSITE
## 65                                Unknown                     C
## 66                                Unknown                     C
## 67                                Unknown                     C
## 68                                Unknown                    SD
## 69                                Unknown                     C
## 70                                Unknown                     C
## 71                                Unknown                     C
## 72                                Unknown                     C
## 73                              Caucasian                    SD
## 75                              Caucasian                    SD
## 77                              Caucasian                    SD
## 79                                Unknown                     C
## 80                                Unknown                     C
## 82                                Unknown                    SD
## 83                                Unknown                    SD
## 90                                                            C
## 92                              Caucasian                    SD
## 99                              Caucasian                    SD
## 100                             Caucasian                    SD
## 104 Caucasian/African American, Caucasian                     C
## 107 Caucasian/African American, Caucasian                     C
## 108                             Caucasian                    SD

Answer 3

library(GenomicRanges)
gr <-
 GRanges(seqnames = paste0("chr", c(1:22, tail(letters, 11))),
 ranges = IRanges(start=1:33, width = 1000 ),
 strand = c(rep("+", 10), rep("-", 23)),
 score = 1:33,
 GC = seq(1, 0, length=33))

## extract ranges only from chromosome 3 
gr[seqnames(gr) %in% "chr3",]
## GRanges object with 1 range and 2 metadata columns:
##       seqnames    ranges strand |     score        GC
##          <Rle> <IRanges>  <Rle> | <integer> <numeric>
##   [1]     chr3 [3, 1002]      + |         3    0.9375
##   -------
##   seqinfo: 33 sequences from an unspecified genome; no seqlengths
## extract the first five ranges from the GRanges.
gr[1:5, ]
## GRanges object with 5 ranges and 2 metadata columns:
##       seqnames    ranges strand |     score        GC
##          <Rle> <IRanges>  <Rle> | <integer> <numeric>
##   [1]     chr1 [1, 1000]      + |         1         1
##   [2]     chr2 [2, 1001]      + |         2   0.96875
##   [3]     chr3 [3, 1002]      + |         3    0.9375
##   [4]     chr4 [4, 1003]      + |         4   0.90625
##   [5]     chr5 [5, 1004]      + |         5     0.875
##   -------
##   seqinfo: 33 sequences from an unspecified genome; no seqlengths
## extract the score and sequence column from a GRanges
mcols(gr)
## DataFrame with 33 rows and 2 columns
##         score        GC
##     <integer> <numeric>
## 1           1   1.00000
## 2           2   0.96875
## 3           3   0.93750
## 4           4   0.90625
## 5           5   0.87500
## ...       ...       ...
## 29         29   0.12500
## 30         30   0.09375
## 31         31   0.06250
## 32         32   0.03125
## 33         33   0.00000
## keep only the standard chromosomes (i.e.) from chromosome 1 to 22, x, y,m
keepStandardChromosomes(gr)
## GRanges object with 22 ranges and 2 metadata columns:
##        seqnames     ranges strand   |     score        GC
##           <Rle>  <IRanges>  <Rle>   | <integer> <numeric>
##    [1]     chr1  [1, 1000]      +   |         1         1
##    [2]     chr2  [2, 1001]      +   |         2   0.96875
##    [3]     chr3  [3, 1002]      +   |         3    0.9375
##    [4]     chr4  [4, 1003]      +   |         4   0.90625
##    [5]     chr5  [5, 1004]      +   |         5     0.875
##    ...      ...        ...    ... ...       ...       ...
##   [18]    chr18 [18, 1017]      -   |        18   0.46875
##   [19]    chr19 [19, 1018]      -   |        19    0.4375
##   [20]    chr20 [20, 1019]      -   |        20   0.40625
##   [21]    chr21 [21, 1020]      -   |        21     0.375
##   [22]    chr22 [22, 1021]      -   |        22   0.34375
##   -------
##   seqinfo: 22 sequences from an unspecified genome; no seqlengths
## change the chromosome naming style to NCBI
seqlevelsStyle(gr) <- "NCBI"
gr
## GRanges object with 33 ranges and 2 metadata columns:
##        seqnames     ranges strand   |     score        GC
##           <Rle>  <IRanges>  <Rle>   | <integer> <numeric>
##    [1]        1  [1, 1000]      +   |         1         1
##    [2]        2  [2, 1001]      +   |         2   0.96875
##    [3]        3  [3, 1002]      +   |         3    0.9375
##    [4]        4  [4, 1003]      +   |         4   0.90625
##    [5]        5  [5, 1004]      +   |         5     0.875
##    ...      ...        ...    ... ...       ...       ...
##   [29]     chrv [29, 1028]      -   |        29     0.125
##   [30]     chrw [30, 1029]      -   |        30   0.09375
##   [31]     chrx [31, 1030]      -   |        31    0.0625
##   [32]     chry [32, 1031]      -   |        32   0.03125
##   [33]     chrz [33, 1032]      -   |        33         0
##   -------
##   seqinfo: 33 sequences from an unspecified genome; no seqlengths
## gaps in the ranges
gaps(gr)
## GRanges object with 32 ranges and 0 metadata columns:
##        seqnames    ranges strand
##           <Rle> <IRanges>  <Rle>
##    [1]        2    [1, 1]      +
##    [2]        3    [1, 2]      +
##    [3]        4    [1, 3]      +
##    [4]        5    [1, 4]      +
##    [5]        6    [1, 5]      +
##    ...      ...       ...    ...
##   [28]     chrv   [1, 28]      -
##   [29]     chrw   [1, 29]      -
##   [30]     chrx   [1, 30]      -
##   [31]     chry   [1, 31]      -
##   [32]     chrz   [1, 32]      -
##   -------
##   seqinfo: 33 sequences from an unspecified genome; no seqlengths
## find degree of overlap for ranges.
coverage(gr)
## RleList of length 33
## $`1`
## integer-Rle of length 1000 with 1 run
##   Lengths: 1000
##   Values :    1
## 
## $`2`
## integer-Rle of length 1001 with 2 runs
##   Lengths:    1 1000
##   Values :    0    1
## 
## $`3`
## integer-Rle of length 1002 with 2 runs
##   Lengths:    2 1000
##   Values :    0    1
## 
## $`4`
## integer-Rle of length 1003 with 2 runs
##   Lengths:    3 1000
##   Values :    0    1
## 
## $`5`
## integer-Rle of length 1004 with 2 runs
##   Lengths:    4 1000
##   Values :    0    1
## 
## ...
## <28 more elements>

Answer4 summarizedExperiment exercise

library(SummarizedExperiment)

## data for the SummarizedExperiment object
sample_df <- data.frame( names=c("Martin", "Herve", "Dan",   
    "Marc", "Valerie", "Jim", "Nate","Paul", "Sonali"),   
    sex=c(rep("Male", 4), "Female", rep("Male", 3), "Female"))
gr_20genes <-
    GRanges(seqnames = paste0("gene", 1:20),
    ranges = IRanges(start=1:20, width = 1000 ),
    strand = c(rep("+", 10), rep("-", 10)),
    score = 1:20,
    GC = seq(1, 0, length=20))
data <- matrix(1:180, ncol=9, byrow=TRUE)

## create a SummarizedExperiment object
core_se <- SummarizedExperiment(assays=data,
           rowRanges=gr_20genes, 
           colData=DataFrame(sample_df))
core_se
## class: RangedSummarizedExperiment 
## dim: 20 9 
## metadata(0):
## assays(1): ''
## rownames: NULL
## rowRanges metadata column names(2): score GC
## colnames: NULL
## colData names(2): names sex
## exploring the SummarizedExperiment object
dim(core_se)
## [1] 20  9
head(assay(core_se))  # data matrix 
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,]    1    2    3    4    5    6    7    8    9
## [2,]   10   11   12   13   14   15   16   17   18
## [3,]   19   20   21   22   23   24   25   26   27
## [4,]   28   29   30   31   32   33   34   35   36
## [5,]   37   38   39   40   41   42   43   44   45
## [6,]   46   47   48   49   50   51   52   53   54
rowRanges(core_se)  # information about the genes
## GRanges object with 20 ranges and 2 metadata columns:
##        seqnames     ranges strand   |     score                 GC
##           <Rle>  <IRanges>  <Rle>   | <integer>          <numeric>
##    [1]    gene1  [1, 1000]      +   |         1                  1
##    [2]    gene2  [2, 1001]      +   |         2  0.947368421052632
##    [3]    gene3  [3, 1002]      +   |         3  0.894736842105263
##    [4]    gene4  [4, 1003]      +   |         4  0.842105263157895
##    [5]    gene5  [5, 1004]      +   |         5  0.789473684210526
##    ...      ...        ...    ... ...       ...                ...
##   [16]   gene16 [16, 1015]      -   |        16  0.210526315789474
##   [17]   gene17 [17, 1016]      -   |        17  0.157894736842105
##   [18]   gene18 [18, 1017]      -   |        18  0.105263157894737
##   [19]   gene19 [19, 1018]      -   |        19 0.0526315789473685
##   [20]   gene20 [20, 1019]      -   |        20                  0
##   -------
##   seqinfo: 20 sequences from an unspecified genome; no seqlengths
colData(core_se)  # sample information
## DataFrame with 9 rows and 2 columns
##      names      sex
##   <factor> <factor>
## 1   Martin     Male
## 2    Herve     Male
## 3      Dan     Male
## 4     Marc     Male
## 5  Valerie   Female
## 6      Jim     Male
## 7     Nate     Male
## 8     Paul     Male
## 9   Sonali   Female
## subset the SummarizedExperiment object
## subsetting the sample information
core_se[, core_se$sex == "Female"]
## class: RangedSummarizedExperiment 
## dim: 20 2 
## metadata(0):
## assays(1): ''
## rownames: NULL
## rowRanges metadata column names(2): score GC
## colnames: NULL
## colData names(2): names sex
## subsetting the gene information
core_se[,1:2]
## class: RangedSummarizedExperiment 
## dim: 20 2 
## metadata(0):
## assays(1): ''
## rownames: NULL
## rowRanges metadata column names(2): score GC
## colnames: NULL
## colData names(2): names sex

0.3 sessionInfo()

sessionInfo()
## R version 3.2.1 (2015-06-18)
## Platform: x86_64-unknown-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.2 LTS
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] org.Hs.eg.db_3.1.2                      RSQLite_1.0.0                          
##  [3] DBI_0.3.1                               TxDb.Hsapiens.UCSC.hg19.knownGene_3.1.3
##  [5] GenomicFeatures_1.21.13                 AnnotationDbi_1.31.17                  
##  [7] AnnotationHub_2.1.30                    RNAseqData.HNRNPC.bam.chr14_0.7.0      
##  [9] GenomicAlignments_1.5.11                Rsamtools_1.21.14                      
## [11] Biostrings_2.37.2                       XVector_0.9.1                          
## [13] SummarizedExperiment_0.3.2              Biobase_2.29.1                         
## [15] GenomicRanges_1.21.16                   GenomeInfoDb_1.5.8                     
## [17] IRanges_2.3.14                          S4Vectors_0.7.10                       
## [19] BiocGenerics_0.15.3                     ggplot2_1.0.1                          
## [21] BiocStyle_1.7.4                        
## 
## loaded via a namespace (and not attached):
##  [1] reshape2_1.4.1               colorspace_1.2-6             htmltools_0.2.6             
##  [4] rtracklayer_1.29.12          yaml_2.1.13                  interactiveDisplayBase_1.7.0
##  [7] XML_3.98-1.3                 BiocParallel_1.3.34          lambda.r_1.1.7              
## [10] plyr_1.8.3                   stringr_1.0.0                zlibbioc_1.15.0             
## [13] munsell_0.4.2                gtable_0.1.2                 futile.logger_1.4.1         
## [16] codetools_0.2-14             evaluate_0.7                 labeling_0.3                
## [19] knitr_1.10.5                 biomaRt_2.25.1               httpuv_1.3.2                
## [22] BiocInstaller_1.19.8         curl_0.9.1                   proto_0.3-10                
## [25] Rcpp_0.11.6                  xtable_1.7-4                 scales_0.2.5                
## [28] formatR_1.2                  mime_0.3                     digest_0.6.8                
## [31] stringi_0.5-5                shiny_0.12.1                 grid_3.2.1                  
## [34] tools_3.2.1                  bitops_1.0-6                 magrittr_1.5                
## [37] RCurl_1.95-4.7               futile.options_1.0.0         MASS_7.3-43                 
## [40] rmarkdown_0.7                httr_1.0.0                   R6_2.1.0