
minfi and shinyMethyl: a winning pair of

R-packages for the analysis of methylation data

shinyMethyl’s author: Jean-Philippe Fortin

minfi’s authors: Kasper D. Hansen Martin J. Aryee Rafael Irizarry

Tutorial BioC 2013

1 Introduction

The goal of the tutorial is to introduce the Bioconductor community to the
minfi package [1], an R-package that provides tools for analyzing Illumina’s
Methylation array, and shinyMethyl [2], a complementary shiny application
to interactively explore methylation data.

We will go through an almost complete list of the minfi’s functions, start-
ing by reading the input data (IDAT files) of a small dataset, and ending with a
list of differentially methylated loci. We will cover quality control assessments,
within-array and between-array normalization, gender prediction, differential
analysis of unique locations and bump hunting. But before that, let’s start by
a quick review of the 450k methylation array.

450k Array design and terminology

Each sample is measured on a single array, in two different color channels (red
and green). As the name of the platform indicates, each array measures more
than 450,000 CpG positions. For each CpG, we have two measurements: a
methylated intensity and an unmethylated intensity. Depending on the probe
design, the signals are reported in different colors:

For Type I design, both signals are measured in the same color: one probe
for the methylated signal and one probe for the unmethylated signal.

For Type II design, only one probe is used. The Green intensity measures the
methylated signal, and the Red intensity measures the unmethylated signal.

1

Figure 1: Probe design of the 450k array

2

Some definitions

Beta-value:

β =
M

M + U + 100

where M and U denote the methylated and unmethylated signals respectively.

M-Value:

Mval = log

(
M

U

)

DMP: Differentially methylated position: single genomic position that has a
different methylated level in two different groups of samples (or conditions)

DMR: Differentially methylated region: when consecutive genomic locations
are differentially methylated in the same direction.

Array: One sample

Slide: Physical slide containing 12 arrays (6× 2 grid)

Plate: Physical plate containing at most 8 slides (96 arrays). For this tu-
torial, we use batch and plate interchangeably.

2 Reading Data

The starting point of minfi is the reading of the .IDAT file with the built-in
functionread.450k.exp. Several options are available: the user can specify the
sample filenames to be read in along with the directory path, or can specify
the directory that contains the files. In the latter case, all the files with the
extension .IDAT located in the directory will be loaded into R. The user can
also read in a sample sheet, and then use the sample sheet to load the data into
a RGChannelSet. For more information, see the minfi vignette. Here, we will
load the dataset containing 6 samples from the minfiData package using the
sample sheet provided within the package:

> require(minfi)

> require(minfiData)

> baseDir <- system.file("extdata",package="minfiData")

> targets <- read.450k.sheet(baseDir)

[read.450k.sheet] Found the following CSV files:

[1] "/Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/SampleSheet.csv"

3

> targets

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID person age sex

1 GroupA_3 H5 NA GroupA NA id3 83 M

2 GroupA_2 D5 NA GroupA NA id2 58 F

3 GroupB_3 C6 NA GroupB NA id3 83 M

4 GroupB_1 F7 NA GroupB NA id1 75 F

5 GroupA_1 G7 NA GroupA NA id1 75 F

6 GroupB_2 H7 NA GroupB NA id2 58 F

status Array Slide

1 normal R02C02 5723646052

2 normal R04C01 5723646052

3 cancer R05C02 5723646052

4 cancer R04C02 5723646053

5 normal R05C02 5723646053

6 cancer R06C02 5723646053

Basename

1 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646052/5723646052_R02C02

2 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646052/5723646052_R04C01

3 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646052/5723646052_R05C02

4 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646053/5723646053_R04C02

5 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646053/5723646053_R05C02

6 /Users/Jean-Philippe/Library/R/3.0/library/minfiData/extdata/5723646053/5723646053_R06C02

> RGSet <- read.450k.exp(base = baseDir, targets = targets)

RGSet RGSet is a RGChannelSet object, which contains the raw data from the
IDAT files: green intensities and red intensities. Let’s extract the phenotype
data:

> phenoData <- pData(RGSet)

> phenoData[,1:6]

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID

5723646052_R02C02 GroupA_3 H5 NA GroupA NA

5723646052_R04C01 GroupA_2 D5 NA GroupA NA

5723646052_R05C02 GroupB_3 C6 NA GroupB NA

5723646053_R04C02 GroupB_1 F7 NA GroupB NA

5723646053_R05C02 GroupA_1 G7 NA GroupA NA

5723646053_R06C02 GroupB_2 H7 NA GroupB NA

person

5723646052_R02C02 id3

5723646052_R04C01 id2

5723646052_R05C02 id3

5723646053_R04C02 id1

5723646053_R05C02 id1

5723646053_R06C02 id2

4

This is nothing else than the sample information contained in the sample sheet.
The RGChannelSet contains also a manifest object of the 450k array describing
the design of the array:

> manifest <- getManifest(RGSet)

> manifest

IlluminaMethylationManifest object

Annotation

array: IlluminaHumanMethylation450k

Number of type I probes: 135476

Number of type II probes: 350036

Number of control probes: 850

Number of SNP type I probes: 25

Number of SNP type II probes: 40

> head(getProbeInfo(manifest))

DataFrame with 6 rows and 8 columns

Name AddressA AddressB Color NextBase

<character> <character> <character> <character> <DNAStringSet>

1 cg00050873 32735311 31717405 Red A

2 cg00212031 29674443 38703326 Red T

3 cg00213748 30703409 36767301 Red A

4 cg00214611 69792329 46723459 Red A

5 cg00455876 27653438 69732350 Red A

6 cg01707559 45652402 64689504 Red A

ProbeSeqA

<DNAStringSet>

1 ACAAAAAAACAACACACAACTATAATAATTTTTAAAATAAATAAACCCCA

2 CCCAATTAACCACAAAAACTAAACAAATTATACAATCAAAAAAACATACA

3 TTTTAACACCTAACACCATTTTAACAATAAAAATTCTACAAAAAAAAACA

4 CTAACTTCCAAACCACACTTTATATACTAAACTACAATATAACACAAACA

5 AACTCTAAACTACCCAACACAAACTCCAAAAACTTCTCAAAAAAAACTCA

6 ACAAATTAAAAACACTAAAACAAACACAACAACTACAACAACAAAAAACA

ProbeSeqB nCpG

<DNAStringSet> <integer>

1 ACGAAAAAACAACGCACAACTATAATAATTTTTAAAATAAATAAACCCCG 2

2 CCCAATTAACCGCAAAAACTAAACAAATTATACGATCGAAAAAACGTACG 4

3 TTTTAACGCCTAACACCGTTTTAACGATAAAAATTCTACAAAAAAAAACG 3

4 CTAACTTCCGAACCGCGCTTTATATACTAAACTACAATATAACGCGAACG 5

5 AACTCTAAACTACCCGACACAAACTCCAAAAACTTCTCGAAAAAAACTCG 2

6 GCGAATTAAAAACACTAAAACGAACGCGACGACTACAACGACAAAAAACG 6

Let’s extract the names of the probes of Type I design:

> typeIProbes <- getProbeInfo(manifest, type = "I")$Name

> head(typeIProbes)

5

[1] "cg00050873" "cg00212031" "cg00213748" "cg00214611" "cg00455876"

[6] "cg01707559"

The 450 array contains also 65 SNP probes that do not interrogate methylation.
They can be used as control probes to check whether or not samples have been
mixed up:

> snpProbesI <- getProbeInfo(manifest, type = "SnpI")$Name

> snpProbesII <- getProbeInfo(manifest, type = "SnpI")$Name

> head(snpProbesI)

[1] "rs10796216" "rs715359" "rs1040870" "rs10936224" "rs213028"

[6] "rs2385226"

3 Quality control

minfi provides several functions and diagnostic plots to assess quality of the
methylation samples. As a starting point, we suggest to look at the function
detectionP() which identifies failed positions defined as both the methylated
and unmethylated channel reporting background signal levels:

> detP <- detectionP(RGSet)

> failed <- detP > 0.01

> head(failed, n=3)

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 FALSE TRUE FALSE

cg00212031 FALSE TRUE FALSE

cg00213748 FALSE TRUE TRUE

5723646053_R04C02 5723646053_R05C02 5723646053_R06C02

cg00050873 TRUE TRUE TRUE

cg00212031 TRUE TRUE TRUE

cg00213748 TRUE TRUE TRUE

To see the fraction of failed positions per sample:

> colMeans(failed)

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02 5723646053_R04C02

0.0009927664 0.0032769530 0.0092397304 0.0042244064

5723646053_R05C02 5723646053_R06C02

0.0034561453 0.0348374499

and to see how many positions failed in > 50% of the samples:

> sum(rowMeans(failed)>0.5)

[1] 1047

6

A simple way to quickly check if a sample failed is to look at the log median
intensity in both the methylated and unmethylated channels. When plotting
the U channel against the M channel, it has been observed that good samples
cluster together, while failed samples tend to separate and to have lower median
intensities.
But wait, so far we only have green and red intensities. We need the methylated
and unmethylated signals; the function preprocessRaw is done for that. It takes
as input a RGChannelSet, convert the red and green intensities to methylated
and unmethylated signals according to the probe design stored in the manifest
object, and returns the converted signals in a new object of class MethylSet.

> MSet <- preprocessRaw(RGSet)

> MSet

MethylSet (storageMode: lockedEnvironment)

assayData: 485512 features, 6 samples

element names: Meth, Unmeth

phenoData

sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

5723646053_R06C02 (6 total)

varLabels: Sample_Name Sample_Well ... filenames (13 total)

varMetadata: labelDescription

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn.v1.2

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.7.8

Manifest version: 0.4.0

To access the methylated and unmethylated intensities:

> head(getMeth(MSet)[,1:3])

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 22041 588 20505

cg00212031 679 569 439

cg00213748 1620 421 707

cg00214611 449 614 343

cg00455876 5921 398 3257

cg01707559 1238 646 637

> head(getUnmeth(MSet)[,1:3])

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 1945 433 1012

cg00212031 6567 300 2689

cg00213748 384 461 295

7

cg00214611 4869 183 1655

cg00455876 1655 792 1060

cg01707559 12227 1009 7414

We will talk more about the MethylSet later. The functions getQC and plotQC

are designed to extract the quality control information from the MethylSet:

> qc <- getQC(MSet)

> head(qc)

DataFrame with 6 rows and 2 columns

mMed uMed

<numeric> <numeric>

5723646052_R02C02 11.69566 11.82058

5723646052_R04C01 11.99046 11.95274

5723646052_R05C02 11.55603 12.05393

5723646053_R04C02 12.06609 12.09276

5723646053_R05C02 12.23332 12.08448

5723646053_R06C02 11.36851 11.60594

> plotQC(qc)

●
●

● ● ●

●

Meth median intensity (log2)

U
nm

et
h

m
ed

ia
n

in
te

ns
ity

 (
lo

g2
)

9 11 13

9
11

13

●

●

good
bad, with sample index

To further explore the quality of the samples, it is useful to look at the Beta
value densities of the samples, with the option to color the densities by group
(e.g. processing data:

8

> densityPlot(RGSet, sampGroups = phenoData$Sample_Group, main= "Beta", xlab = "Beta")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Beta

Beta

D
en

si
ty

GroupA
GroupB

or density bean
plots:

> densityBeanPlot(RGSet, sampGroups = phenoData$Sample_Group)

9

0.0 0.2 0.4 0.6 0.8 1.0

5723646052_R02C02

5723646052_R04C01

5723646052_R05C02

5723646053_R04C02

5723646053_R05C02

5723646053_R06C02

Beta

Beta

Finally, the 450k array contains several internal control probes that can be
used to assess the quality control of different sample preparation steps (bisul-
fite conversion, hybridization, etc.). The values of these control probes can be
plotted by using the function controlStripPlot and by specifying the control
probe type:

> controlStripPlot(RGSet, controls="BISULFITE CONVERSION II")

All the plots above can be exported into a pdf file in one step using the function
qcReport:

> qcReport(RGSet, pdf= "qcReport.pdf")

When the number of samples becomes large, it becomes difficult to assess quality
control using the generated plots above. This is where shinyMethyl comes into
play and complements minfi.

4 Starting with shinyMethyl

In the current version of shinyMethyl, the RGChannelSet is the class object from
which summary statistics are extracted for visualization of the data using the
function extractFromRGSet450k():

10

> source("/data/minfiLab/extractFromRGSet450k.R")

> extractedDataMinfiLab <- extractFromRGSet450k(RGSet,

+ file = "extractedDataMinfiLab.Rda")

The file containing the necessary information for shinyMethyl is saved in the
current working directory. The function reduces a RGChannelSet object of a
large size to a small object (a few MB in size). The extracted object can be
loaded into a personal laptop, and shinyMethyl can run from there. It gives
users the chance to explore their genomic data comfortably, without any delay
due to computational complexity.

There are 3 simple steps to launch shinyMethyl:

1. Extract the data summaries from an RGChannelSet using extractFrom-

RGSet450k()

2. Drag the extracted .Rda file in the shinyMethyl directory

3. Lauch shinyMethyl in R by using the function runApp("./shinyMethyl")

For today’s tutorial, we have previously extracted the following data from an-
other dataset containing 260 samples (HNSCC data from TCGA [3]). The file is
called extractedData.Rd and is already located in /home/data/minfiLab/shinyMethyl.
Please DO NOT modify it. For this tutorial, we need an extra function to make
the server work on the Amazon cluster:

> source("/data/minfiLab/myRunApp.R")

Now we are ready to launch shinyMethyl:

> myRunApp(appDir = "/data/minfiLab/shinyMethyl")

5 Preprocessing and normalization

Different preprocessing steps options are available in minfi

preprocessRaw()

As seen before, it converts a RGChannelSet to a MethylSet by converting the
Red and Green channels into a matrix of methylated signals and a matrix of
unmethylated signals. No “normalization” is performed.

preprocessIllumina()

Convert a RGChannelSet to a MethylSet by implementing the preprocessing
choices as available in Genome Studio: background subtraction and control
normalization. Both of them are optional and turning them off is equivalent to
raw preprocessing (preprocessRaw):

> MSet.illumina <- preprocessIllumina(RGSet, bg.correct = TRUE,

+ normalize = "controls")

11

preprocessSWAN()

Perform Subset-quantile within array normalization (SWAN) [4], a within-array
normalization correction for the technical differences between the Type I and
Type II array designs. The algorithm matches the Beta-value distributions of
the Type I and Type II probes by applying a within-array quantile normalization
separately for different subsets of probes (divided by CpG content). The input
of SWAN is a MethylSet, and the function returns a MethylSet as well. If an
RGChannelSet is provided instead, the function will first call preprocessRaw on
the RGChannelSet, and then apply the SWAN normalization. We recommend
setting a seed (using set.seed) before using preprocessSWAN to ensure that
the normalized intensities will be reproducible.

> MSet.swan <- preprocessSWAN(RGSet)

Before discussing the main preprocessing function of minfi, we need to discuss
in more depth the different storage objects of minfi.

6 MethylSet and RatioSet

As said before, the MethylSet contains the methylated and unmethylated sig-
nals, but no methylation level statistic such as Beta-values of M-values. We can
extract the Beta-values and the M-values from a MethylSet using getBeta and
getM:

> getBeta(MSet, type = "Illumina")[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 0.91509591 0.5245317 0.9485590

cg00212031 0.09243126 0.5872033 0.1359975

cg00213748 0.76996198 0.4287169 0.6415608

cg00214611 0.08287191 0.6845039 0.1634890

> getM(MSet)[1:4,1:3]

5723646052_R02C02 5723646052_R04C01 5723646052_R05C02

cg00050873 3.502348 0.4414491 4.340695

cg00212031 -3.273751 0.9234662 -2.614777

cg00213748 2.076816 -0.1309465 1.260995

cg00214611 -3.438838 1.7463950 -2.270551

Note that the option type = "Illumina" means that a constant of 100 is added
in the denominator. Similarly, as seen before, getMeth and getUnmeth return
methylated and unmethylated intensities respectively .

The RatioSet class is designed to store Beta values and/or M-values instead
of the methylated and unmethylated signals. An optional copy number matrix,
CN, can be also stored. Mapping a MethylSet to a RatioSet is irreversible, i.e.

12

one cannot technically retrieve the raw methylated and unmethylated signals
from a RatioSet. A RatioSet can be created with the function ratioConvert:

> ratioSet <- ratioConvert(MSet, what = "both", keepCN = TRUE)

> ratioSet

RatioSet (storageMode: lockedEnvironment)

assayData: 485512 features, 6 samples

element names: Beta, CN, M

phenoData

sampleNames: 5723646052_R02C02 5723646052_R04C01 ...

5723646053_R06C02 (6 total)

varLabels: Sample_Name Sample_Well ... filenames (13 total)

varMetadata: labelDescription

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn.v1.2

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.7.8

Manifest version: 0.4.0

The function getBeta, getM and getCN return respectively the beta-values ma-
trix, m-values matrix and a matrix of copy number estimates.

7 Map to Genome

The RatioSet is the object containing the final Beta-values and/or M-values
for further analysis. It is also possible to associate genomic coordinates to the
probes by using the function mapToGenome, which will transform the RatioSet

object to a GenomicRatioSet object (class holding M or/and Beta values to-
gether with associated genomic coordinates). It is possible to choose the genome
build version, and to merge the manifest object with the genomic locations by
letting mergeManifest to be TRUE.

> gRatioSet <- mapToGenome(ratioSet, genomeBuild = "hg19", mergeManifest = TRUE)

> gRatioSet

class: GenomicRatioSet

dim: 485512 6

exptData(0):

assays(3): Beta M CN

rownames(485512): cg13869341 cg14008030 ... cg08265308 cg14273923

rowData metadata column names(9): Name AddressA ... nCpG Type

colnames(6): 5723646052_R02C02 5723646052_R04C01 ... 5723646053_R05C02

5723646053_R06C02

colData names(13): Sample_Name Sample_Well ... Basename filenames

13

Annotation

array: IlluminaHumanMethylation450k

annotation: ilmn.v1.2

Preprocessing

Method: Raw (no normalization or bg correction)

minfi version: 1.7.8

Manifest version: 0.4.0

> showClass("GenomicRatioSet")

Class "GenomicRatioSet" [package "minfi"]

Slots:

Name: preprocessMethod annotation

Class: character character

Name: exptData rowData

Class: SimpleList GenomicRangesORGRangesList

Name: colData assays

Class: DataFrame Assays

Extends: "SummarizedExperiment"

Note that the GenomicRatioSet extends the class SummarizedExperiment. Here
are the main accessors functions to access the data:

> getBeta(gRatioSet)

> getM(gRatioSet)

> getCN(gRatioSet)

> sampleNames <- sampleNames(gRatioSet)

> probeNames <- featureNames(gRatioSet)

> pheno <- pData(gRatioSet)

To extract the genomic locations:

> gRanges <- rowData(gRatioSet)

> head(gRanges, n= 3)

GRanges with 3 ranges and 9 metadata columns:

seqnames ranges strand | Name AddressA

<Rle> <IRanges> <Rle> | <character> <character>

cg13869341 chr1 [15865, 15865] * | cg13869341 62703328

cg14008030 chr1 [18827, 18827] * | cg14008030 27651330

cg12045430 chr1 [29407, 29407] * | cg12045430 25703424

AddressB Color NextBase

14

<character> <character> <DNAStringSet>

cg13869341 16661461 Red A

cg14008030 <NA> <NA>

cg12045430 34666387 Red A

ProbeSeqA

<DNAStringSet>

cg13869341 CCAATAACTAACCACTCTACTAAAATCCATCCACCAAACTAAAAACATCA

cg14008030 ACTCRAAATTTACTCAATAAACCRTTCAATATATACAAAAACAATTCCCC

cg12045430 AAAAAAAACACAATAAAAAACAAACAACAACATTAAAACCCAAAAACACA

ProbeSeqB nCpG

<DNAStringSet> <integer>

cg13869341 CCGATAACTAACCACTCTACTAAAATCCATCCGCCAAACTAAAAACATCG 2

cg14008030 2

cg12045430 GAAAAAAACGCAATAAAAAACGAACGACGACGTTAAAACCCGAAAACGCG 7

Type

<character>

cg13869341 I

cg14008030 II

cg12045430 I

seqlengths:

chr1 chr2 chr3 chr4 chr5 chr6 ... chr19 chr20 chr21 chr22 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA NA

8 Sex prediction

By looking at the median total intensity of the X chromosome-mapped probes,
denoted med(X), and the median total intensity of the Y-chromosome-mapped
probes, denoted med(Y), one can observe two different clusters of points corre-
sponding to which gender the samples belong to. To predict the gender, minfi
separate the points by using a cutoff on log2med(Y)− log2med(Y). The default
cutoff is −2. Since the algorithm needs to map probes to the X-chr and to the
Y-chr, the input of the function getSex() needs to be a GenomicMethylSet or
a GenomicRatioSet.

> predictedSex <- getSex(gRatioSet, cutoff = -2)$predictedSex

> head(predictedSex)

[1] "M" "F" "M" "F" "F" "F"

To choose the cutoff to separate the two gender clusters, one can plot med(Y)
against med(Y) with the function plotSex:

> plotSex(getSex(gRatioSet, cutoff = -2))

Furthermore, shinyMethyl has a panel which allow the user to choose interac-
tively the cutoff.

15

Remark : the function does not handle datasets with only females or only males

9 preprocessQuantile()

The function preprocessQuantile() is a useful one-step command to convert
directly a basic RGChannelSet to a GenomicRatioSet, i.e. convert red and green
intensities to final beta values, M values, copy number estimates and genomic lo-
cations. It also suggests a between-array normalization called “Stratified Subset
Quantile Normalization”. The function has several internal steps:

1) Fix outliers of both the methylated and unmethylated channels (optional)

2) Remove bad samples using quality control (optional)

3) Map to the genome using mapToGenome

4) Perform stratified subset quantile normalization (optional)

5) Predict the sex if not provided using the function getSex

We have covered all steps mentioned above except the stratified subset quantile
normalization (SSQN). What SSQN does is

• Perform the quantile normalization on the methylated and unmethylated
channels separately

• The quantile normalization is applied separately on 3 different subsets of
probes: autosomal probes, X-chr probes and Y-chr probes. For the X-chr
and Y-chr probes, samples are quantile normalized separately by sex.

• If stratified = TRUE, the subset of autosomal probes is further divided
into three subsets: probes mapping to CpG islands, probes mapping to
CpG shores, and the rest of the probes. Quantile normalization is then
applied separately for each subset of probes

> gRatioSet.quantile <- preprocessQuantile(RGSet, fixOutliers = TRUE,

+ removeBadSamples = TRUE, badSampleCutoff = 10.5,

+ quantileNormalize = TRUE, stratified = TRUE,

+ mergeManifest = FALSE, sex = NULL)

[preprocessQuantile] Mapping to genome.

[preprocessQuantile] Fixing outliers.

[preprocessQuantile] Quantile normalizing.

Now, we have covered all the preprocessing steps included in minfi. We have a
GenomicRatioSet, and we are ready to start a statistical analysis of the data.

16

10 dmpFinder: to find differentially methylated
positions (DMPs)

To find differentially methylated positions with respect to a phenotype of inter-
est, the function dmpFinder is our friend. The phenotype may be categorical
(e.g. cancer vs. normal) or continuous (e.g. blood pressure). Let’s apply dm-

rFinder on the genomicRatioSet.quantile that we have created above, with the
predicted sex as the phenotype:

> beta <- getBeta(gRatioSet.quantile)

> predictedSex <- pData(gRatioSet.quantile)$predictedSex

> dmp <- dmpFinder(beta, pheno = predictedSex , type = "categorical")

> head(dmp)

intercept f pval qval

cg14928964 0.6267611 25241.22 9.414902e-09 0.001840777

cg26010707 0.4258709 20569.70 1.417603e-08 0.001840777

cg22484503 0.5228533 19957.59 1.505879e-08 0.001840777

cg01771673 0.6362476 19165.32 1.632932e-08 0.001840777

cg11854877 0.5623077 17787.24 1.895707e-08 0.001840777

cg24779040 0.5850674 15312.92 2.557680e-08 0.002069641

11 Bumphunter: to find differentially methy-
lated regions (DMRs)

The bumphunter function in minfi is a version of the bump hunting algorithm
[5] adapted to the 450k array, relying on the bumphunter function implemented
in the eponym package bumphunter [6].

Instead of looking for association between a single genomic location and a phe-
notype of interest, bumphunter looks for association with genomic regions.
In the context of the 450k array, the algorithm first defines clusters of probes.
Clusters are simply groups of probes such that two consecutive probe locations
in the cluster are not separated by more than some distance mapGap. To find
the differentially methylated regions, the following statistical model is used.

Underlying statistical model for bumphunter

(statistical model described in [6]) We assume that we have data Yij , here Beta-
values of M-values, where i represents biological replicate, and lj represents a
genomic location. The basis statistical model is

Yij = β0(lj) + β1(lj)Xj + εij

with i representing subject, lj representing the jth location, Xj is the covariate
of interest (for example Xj = 1 for cases and Xj = 0 otherwise), εij is measure-
ment error, β0(l) is a baseline function, and β1(l) is the parameter of interest,

17

which is a function of location. We assume that β1(l) will be equal to zero over
most of the genome, and we want to identify segments where β1 6= 0, which we
call bumps.

We want to share information between nearby locations, typically through some
form of smoothing. As explained in [[[]], the algorithm can be summarized into
the following main steps:

A. Compute the coefficients β1(lj) at each genomic location lj .

B. Optional smoothing of the coefficients β1(lj) across genomic locations
within a cluster of probes

C. Define a candidate region as a region for whichβ1(lj) exceeds a given pre-
defined threshold for all probes within the region

D. Test for significance of the candidate regions using a permutation scheme

Since the permutation test is expensive, parallel computation is implemented
in the bumphunter function. The foreach package allows different parallel
“back-ends” that will distribute the computation across multiple cores in a single
machine, or across machines in a cluster.

> pheno <- pData(gRatioSet.quantile)$age

> designMatrix <- model.matrix(~ pheno)

> dmrs <- bumphunter(gRatioSet.quantile, design = designMatrix, cutoff = 0.05, B=1)

> names(dmrs)

[1] "table" "coef" "fitted" "pvaluesMarginal"

[5] "null" "algorithm"

> head(dmrs$table, n = 3)

chr start end value area cluster indexStart indexEnd

18657 chrX 153774721 153776358 -0.1267772 2.662320 204615 484928 484948

17769 chrX 47004051 47005131 -0.1321849 2.379329 201679 476641 476658

17986 chrX 68835489 68837158 -0.1366464 2.186342 202426 478793 478808

L clusterL p.value fwer p.valueArea fwerArea

18657 21 21 0 0 0 0

17769 18 18 0 0 0 0

17986 16 16 0 0 0 0

References

[1] Hansen, K.D. and Aryee, M. minfi: Analyze Illumina’s 450k methylation
arrays. R package version 1.7.8

[2] shinyMethyl at shinyMethyl.com

18

Figure 2: Flow chart of the minfi’s functions

[3] The Cancer Genome Atlas (TCGA): data portal at https://tcga-data.nci.nih.gov/tcga/

[4] Maksimovic, J., Gordon, L., Oshlack, A. SWAN: subset quantile Within-
Array Normalization for Illumina Infinium HumanMethylation450 Bead-
Chips Genome Biology, 13(6) R44, 2012

[5] Jaffe, A. E, Murakami, P. Lee, H. Leek, J.T., Fallin, M.D., Feinberg, A.P.,
Irizarry, R. Bump hunting to identify differentially methylated regions in
epidemiology studies International Journal of Epidemiology, 41(1): 200-
209, 2012

[6] Irizarry, A.R., Aryee, M., Corrada Bravo, H., Hansen, K.D., Jaffee, H.A
bumphunter: Bump Hunter, R package version 1.1.10

12 Exercises

1) Before processing a RGChannelSet further, coudl you remove the probes
which failed more than 50% of the samples in the example dataset?

2) For the top loci that we found differentially methylated for the predicted
sex, could you tell if those loci are mostly mapped to the X and Y chro-
mosomes?

3) It is known that the Beta-value distribution of the Type I probes is dif-
ferent from the Beta value distribution of the Type II probes. Can you
verify this with by plotting the Beta-value distribution density for each
type separately?

19

Figure 3: Quality control panel in shinyMethyl

Figure 4: Array design panel in shinyMethyl

20

Figure 5: Gender prediction panel of shinyMethyl

Figure 6: Principal component analysis (PCA) panel in shinyMethyl

21

