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SV definitions
structural variant (SV): a difference in 
the copy number, orientation or 
location of genomic segments >100bp 

genomic rearrangement: ditto

copy number variant (CNV), or 
alteration (CNA): an SV that alters 
DNA copy number

breakpoint: The junction(s) between 
structurally variable genomic segments 

complex SV: 2 or more breakpoints 
that arise through a single mutational 
event, but cannot be explained by one 
DNA exchange or end-joining reaction

DB CAReference

DB CA BDuplication

DC BInversion A

DCADeletion *
DB CXInsertion A

Translocation RB QA
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“Signals” for SV discovery

too big
(deletion)

Depth of 
coverage

Paired-end
mapping

Split-read
mapping

3.  Known SV sites

4.  Predictions 
from other tools

Most existing SV tools exploit just one signal

1.  Prior knowledge

2.  New signals 
  (e.g. positional seq.)
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SV discovery is fraught with a high 
false negative rate.

• Most current datasets have low to moderate physical coverage 
due to small insert size (~10-20X)
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SV discovery is fraught with a high 
false negative rate.

• Most current datasets have low to moderate physical coverage 
due to small insert size (~10-20X)

• Breakpoints are enriched in repetitive genomic regions that pose 
problems for sensitive read alignment

• Filtering false positives also eliminates true positives.

• The false negative rate is usually hard to measure, but is thought 
to be extremely high for most PEM studies (>30%)

• When searching for somatic mutation in a tumor/normal 
comparison, a false negative call in the normal can cause a false 
positive somatic call in the tumor. 

• False negatives are very problematic in the context of tumor 
heterogeneity

Thursday, July 25, 13



A probabilistic framework that integrates 
multiple alignment “signals” for SV discovery.  

Improved sensitivity.

under review
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DELLY: Rausch et al, 2012

too big
(deletion)

Depth of 
coverage

Paired-end
mapping

Split-read
mapping

Prior
knowledge

Known SV sites

Predictions from
other tools

1. Predict

2. Refine

“Stepwise”

Thursday, July 25, 13



GASVPro: Sindhi et al, 2012

too big
(deletion)

Depth of 
coverage

Paired-end
mapping

Split-read
mapping

Prior
knowledge

Known SV sites

Predictions from
other tools

Combines DoC and PEM signals for greater specificity,
especially for deletions (using DoC)

“Integrative”
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             Layer et al, unpub.

too big
(deletion)

Depth of 
coverage

Paired-end
mapping

Split-read
mapping

LUMPY integrates all (and future) signals 

3.  Known SV sites

4.  Predictions 
from other tools

1.  Prior knowledge

2.  New signals 
  (e.g. positional seq.)
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LUMPY 
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Paired-end library statistics inform
SV breakpoint prediction
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Sample

Combining SV signals
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Sensitivity is crucial in the context of 
tumor heterogeneity

Russnes et al, 2011
Thursday, July 25, 13



Tumor heterogeneity simulation: an in silico “spike in”

hg19 (build 37)

hg19 + 5,516 known 
deletions from 1000G

“tumor” “normal”

+
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The impact of combining multiple SV signals

Combining paired-end and split-read signals is  more sensitive than each alone

(40X coverage)
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Solution 2: pool data from many 
samples

It improves SNP and INDEL calling, so 
why not SVs?
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PEM clusters discordant mappings
too bigeverted orientation same-strand distant linkage

Cluster to localize 
breakpoints

ref. genome

Deleted 
interval The Hydra algorithm:

-­‐ simple & fast

-­‐ comprehensive: detects all breakpoint classes

-­‐ combinatorial: optionally uses multiple 

mappings to detect mobile element insertions

-­‐ Quinlan et al., 2010. Genome Research; 

  http://code.google.com/p/hydra-sv/

discordant	
  read-­‐pairs	
  (~1%)

Hydra 

1 signal (PEM), 1 sample

tandem duplication deletion inversion insertion, 
retrotransposition,

translocation
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HYDRA-MULTI: Pooling prevents false somatic calls

tumor 1 tumor N

B C D E F G H IA J B C D E F G H IA J

clustering

normal 1 normal N

inherited mutation

B C D E F G H IA J

inherited mutation
(FP somatic w/o pooling) somatic mutation

. . . 

Note: GATK pioneered population-based SNP and INDEL detection; GenomeSTRiP and VariationHunter use a similar approach
Quinlan et al., Cell Stem Cell (2011);  
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The landscape of complex 
variation in 64 cancer genomes.

(using HYDRA-MULTI)
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64 Tumors and 65 matched normals (1 dup.)

- 12 breast invasive carcinomas (BRCA)

- 3 colon adenocarcinomas (COAD)

- 18 glioblastoma multiforme (GBM)

- 6 lung adenocarcinoma (LUAD)

- 13 lung squamous cell carcinoma (LUSC)

- 11 ovarian serous cystadenocarcinoma (OV)

- 2 rectum adenocarcinoma (READ)
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Data (re++)processing

129 BAM files
99.7 billion readpairs
14 TB raw data from

TCGA

calculate 
library stats

hyper-aggressive 
duplicate removalHYDRA-MULTI

Filtering
inversion artifact
simple repeats
mapping quality
number mappings
support (3 readpairs)

33,218 HIGH 
CONFIDENCE 

CALLS

quality control 
(corrupt files, 
incorrect flags)

re-align discordant 
reads with 
NovoAlign

27039 inherited 
germline 

breakpoints

6179 de novo 
somatic breakpoints

Michael LindbergAnkit Malhotra
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How do we assess the quality of 
the somatic rearrangement calls?
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1. 64 out of 64 tumor / normal pairs cluster 
as nearest neighbors

12
09

6 
SV

 b
re

ak
po

in
ts

64 tumor / normal pairs

3 tumor/
normal pairs

deletions
duplications
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2. Pooling yields accurate predictions of 
somatically-acquired SVs in tumors.
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*691

Variants unique to a 
single normal sample (N=323)

Variants unique to a single cancer sample (N=6,179)

COAD

OV
LUAD

GBM LUSC

BRCA

READ

Assuming all normal-only calls are false, suggests 5% somatic prediction error rate.  
Likelihood of LOH suggests it is actually lower.
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Much worse if we just did a simple tumor/
normal comparison (the standard)

Variants unique to a single cancer sample (N=41,510)

Somatic misclassification rate jumps from 5% with pooling to 86%!
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We have a high-quality set of 
somatic rearrangements from 

multiple tumors.

But what do they tell us about 
chromosome evolution in cancers?

Thursday, July 25, 13



Observation 1.

We immediately noticed several 
staggeringly complex 
rearrangements (CRs).
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A 
staggeringly 

complex 
variant

253/296 (85%) 
breakpoints in this 

tumor comprise a single 
complex rearrangement

red = deletion
green = tandem 
duplication
blue = inversion
grey = inter-chromosomal
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A couple of weeks later...

Chromothripsis: chromosome shattering in a single, 
catastrophic event.
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Why are complex genomic 
rearrangements important?

1) Punctuated genome evolution 
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cen tel// //chr8:71mb

chr16:15mb centel chr7:113mbcen tel

chr8:81mb chr8:128mb

NCOA2 - 3’TPD52 - 5’

NCOA2 - 5’ FOXP2-3’ FOXP2-5’ MYC - 3’

TPD52 - 3’MYH11- 5’TPD52 - 5’ MYH11- 3’

FOXP2-3’ 
MYC-5’

(upstream noncoding)

fusion products

A relatively mutation free multiple myeloma genome with 1 
balanced rearrangement that produces 5 fusion genes

from Ira Hall (UVA) and Elaine 
Mardis (WUGSC)
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1) Punctuated genome evolution 

2) Mechanistically interesting

Why are complex genomic 
rearrangements important?
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A model for chromothripis

C D E F GB

E

F

C

F

C

G

D

catastrophic 
shattering

A

B

B GA

fragment 
lossrandom ligation

(NHEJ)

E

D

Stephens et al., Cell, 2011
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Identifying complex rearrangements

HYDRA-MULTI SV calls

Identify breakpoint “clusters” w/ BEDTOOLS

//

simple

chain I

chain II

//

Identify chains of connected clusters w/ BEDTOOLS
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Observation 2.

Complex rearrangements are quite 
common in tumor genomes.
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25% of all somatic breakpoints are part of complex 
mutations. Not random.
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Observation 3.

Complex rearrangements are very 
common in glioblastoma.
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Enrichment in GBM.  Compare to BRCA: more 
breakpoints per sample, but rarely in complex loci
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Observation 4.

Vast architectural diversity observed 
for complex variants
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Focal amplification of EGFR

Interchrom. co-amplification

Multi-focal amplification

Mild Complex

Very complex Highly-rearranged
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Chromothripis examples
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Observation 5.

Complex rearrangements have 
elevated intra-tumor allele 

frequencies
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mild complex variants (3-19 
breakpoints); n=333

chromothripsis
 (>=20 breakpoints); 

n=388

Allele Frequency

Allele Frequency

simple somatic variants; 
n=1973

Complex loci have higher allele frequencies
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Why? Evidence that chromothriptic 
medulloblastomas form extrachromosomal 

circles (double minutes) containing 
oncogenes
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- Stephens et al. (2011) estimated an incidence of 1.3% in all tumors, and perhaps 25% 
of bone cancers (by microarrays)

- Molenaar et al. (2012) estimated 11% of neuroblastoma samples (by sequencing)

- Rausch et al. (2012) estimated 13% of Medulloblastomas (by microarrays), strongly 
correlated with P53 loss.

- We find that 40-50% of GBM and LUSC samples have chromothripsis (by sequencing)

Are brain tumors particularly prone to 
chromothripsis?
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Summary

- Complex rearrangements are quite common in 
tumors.

- Many appear to be chromothripsis.

- 70% of glioblastomas have very complex 
rearrangements

- Fitness possibly conferred by oncogene amplification

- Origin? Prevalence? Clinical utility?
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