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SV definitions

structural variant (SV): a difference in
the copy number, orientation or
location of genomic segments >100bp

genomic rearrangement: ditto

copy number variant (CNV), or
alteration (CNA): an SV that alters
DNA copy number

Reference __ A

B C D™

Deletion A + c
Inversion _| | _.+ . complex SV: 2 or more breakpoints

that arise through a single mutational

Translocation __ 8 —H event, but cannot be explained by one

DNA exchange or end-joining reaction
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Insertion _ - breakpoint: The junction(s) between

structurally variable genomic segments
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"Signals” for SV discovery

Depth of Paired-end
coverage mapping

LJ (deletion)

Split-read 1. Prior knowledge
mapping 2. New signals

' (e.g. positional seq.)
3. Known SV sites
. I ' 4. Predictions

from other tools

Most existing SV tools exploit just one signal



SV discovery is fraught with a high
false negative rate.

* Most current datasets have low to moderate physical coverage
due to small insert size (~10-20X)
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SV discovery is fraught with a high
false negative rate.

* Most current datasets have low to moderate physical coverage
due to small insert size (~10-20X)

* Breakpoints are enriched in repetitive genomic regions that pose
problems for sensitive read alignment

e Filtering false positives also eliminates true positives.

e The false negative rate is usually hard to measure, but is thought
to be extremely high for most PEM studies (>30%)

 \When searching for somatic mutation in a tumor/normal
comparison, a false negative call in the normal can cause a false

positive somatic call in the tumor.
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SV discovery is fraught with a high
false negative rate.

* Most current datasets have low to moderate physical coverage
due to small insert size (~10-20X)

* Breakpoints are enriched in repetitive genomic regions that pose
problems for sensitive read alignment

e Filtering false positives also eliminates true positives.

e The false negative rate is usually hard to measure, but is thought
to be extremely high for most PEM studies (>30%)

 \When searching for somatic mutation in a tumor/normal
comparison, a false negative call in the normal can cause a false
positive somatic call in the tumor.

* False negatives are very problematic in the context of tumor
heterogeneity
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A probabilistic framework that integrates
multiple alignment “signals” for SV discovery.
Improved sensitivity.

under review



DELLY: Rausch et al, 2012

Paired-end
mapping

(deletion)
1. Predict
Split-read ,'l
mapping i “Stepwise”

Y4

) | ) Refine<-"
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GASVPro: Sindhi et al, 2012

[ ) ( )
Depth of Paired-end
coverage mapping

00000'000‘0.'
LJ (deletion)
. J . J

Combines DoC and PEM signals for greater specificity,
especially for deletions (using DoC)

“Integrative”
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Layer et al, unpub.

Depth of Paired-end
coverage mapping

LJ (deletion)

Split-read 1. Prior knowledge
mapping 2. New signals

' (e.g. positional seq.)
3. Known SV sites
— ' 4. Predictions

from other tools

LUMPY integrates all (and future) signals



LUMPY integrates all SV signals

Sources Nelgglell= Prior knowledge,
calls from other tools,
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Paired-end i

SV brea

Sample
genome

Reference
genome

brary statistics inform

T /l\

<point prediction

DNA library
fragment size distribution
(~500bp library)

N[}

// \\
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Paired-end i

SV brea

Sample
genome ik
"
'O
L4
Reference L’ b .
genome

brary statistics inform

<point prediction

DNA library
fragment size distribution

R (~500bp library)

When aligned to reference, ends
map ~1500bp apart.

// \\

L/ N

—— P~

450 475 500 525 550 575

Where are the breakpoints?
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Paired-end library statistics inform
SV breakpoint prediction

DNA library
Sample 4' fragment size distribution
genome N (~500bp library)
Reference R kb .
genome
1.0000
RN

0.7500

0.5000
0.2500 \
\

\
// N\

450 475 500 525 550 575

When aligned to reference, ends
map ~1500bp apart.
Where are the breakpoints?
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Paired-end library statistics inform
SV breakpoint prediction

DNA library
Sample = fragment size distribution
genome N (~500bp library)
Reiii)er?:;e "/ Tkb ‘\_
S =

1.0000
0.7500 -W‘I
0.5000

0.2500
\

\\
N

When aligned to reference, ends
map ~1500bp apart.
Where are the breakpoints?

450 475 500 525 550 575
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Paired-end library statistics inform
SV breakpoint prediction

DNA library
Sample = fragment size distribution
genome N (~500bp library)
Reiii)e:wc;e '/' Tkb ‘\_
S =

1.0000
0.7500 -W‘I
0.5000

0.2500 550bp \

When aligned to reference, ends
map ~1500bp apart.
Where are the breakpoints?

450 475 500 525 550 575
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Paired-end library statistics inform
SV breakpoint prediction

DNA library
Sample = fragment size distribution
genome N (~500bp library)
Reiii)e:wc;e '/' Tkb ‘\_
9 =

1.0000

0.7500 %P

0.5000

0.2500 550bp \
0 -

575bp

When aligned to reference, ends
map ~1500bp apart.
Where are the breakpoints?

450 475 500 525 550 575
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Combining SV signals

Sample

- s Reference
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Combining SV signals
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Combining SV signals
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Combining SV signals
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Combining SV signals
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Combining SV signals
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Combining SV signals
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Predicted breakpoint intervals

Much greater SV breakpoint resolution and sensitivity
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Sensitivity is crucial in the context of
tumor heterogeneity

A B C
Clonal evolution Cancer stem cells Mutator phenotype

Monoclonal Polyclonal Single progenitor Multiple progenitors

Russnes et al, 2011
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Tumor heterogeneity simulation: an in silico “spike in”

11 1
“tumor” normal
1000 Genomes "R. Genome
A Deep Catalog of Human Genetic Variation + Reference .
hg19 + 5,516 known Consortium
deletions from 1000G hg19 (build 37)
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Tumor heterogeneity simulation: an in silico “spike in”

11 1
“sumor” normal
1000 Genomes "R. Genome
A Deep Catalog of Human Genetic Variation + Referen ce .
hg19 + 5,516 known Consortium
deletions from 1000G hg19 (build 37)
50% tumor freq.
\ \‘\
\ >
O
& o‘((\
WX w QO
FASTA FASTA
wgsim wgsim
(20x) (20X)
~N ~ e
What fraction of
40X the 5516 SVs
BAM can we detect?
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Tumor heterogeneity simulation: an in silico “spike in”

“tumor” “normal”
1000 Genomes “Rc Genome
A Deep Catalog of Human Genetic Variation + R ef erence .
hg1 9 + 5,516 known Consortium
deletions from 1000G hg19 (build 37)
50% tumor freq. 20% tumor freq. I 1% tumor freq.
{ 2 { > { >
O O O
& o‘((\ S o‘(o S o‘((\
wxe WO wxe w QO WX W QO
FASTA FASTA FASTA FASTA FASTA FASTA
wgsim wgsim wgsim wgs1im wgsim wgsim
(20x) (20X) (4x) (36X) (0.4x) (39.6X)
\ \¥_ / \ \\_ / \ §¥_ /
What fraction of
40X the 5516 SVs 40X 40X
BAM can we detect? BAM BAM
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LUMPY has highest sensitivity
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o
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LUMPY has highest sensitivity...with minimal FDR

o
o
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The impact of combining multiple SV signals

Combining paired-end and split-read signals is more sensitive than each alone

10—

O
o

Sensitivity
O
(@)
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Solution 2: pool data from many
samples

It improves SNP and INDEL calling, so

why not SVs?




PEM clusters discordant mappings

everted orientation too big same-strand distant linkage
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tandem duplication deletion inversion insertion,
retrotransposition,
translocation
Cluster to localize

breakpoints

ref. genome

Deleted

Hydra : .
| interval The Hydra algorithm:

- simple & fast

- comprehensive: detects all breakpoint classes

- combinatorial: optionally uses multiple

mappings to detect mobile element insertions

- - Quinlan et al., 2010. Genome Research;
1 signal (PEM), 1 sample http://code.google.com/p/hydra-sv/
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http://code.google.com/p/hydra-sv/
http://code.google.com/p/hydra-sv/

HYDRA-MULTI: Pooling prevents false somatic calls

tumor 1 normal 1 .« o tumor normal N

\ clustering ¥

inherited mutation

inherited mutation (FP somatic w/o pooling) somatic mutation
O I% . '% B 0
- O - l% " .% -
= @ = n3 %
= = o

[
O

Quinlan et al., Cell Stem Cell (2011);
Note: GATK pioneered population-based SNP and INDEL detection; GenomeSTRiP and VariationHunter use a similar approach
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The landscape of complex

variation in 64 cancer genomes.
(using HYDRA-MULTI)

Breakpoint profiling of 64 cancer genomes reveals
numerous complex rearrangements spawned
by homology-independent mechanisms

Ankit Malhotra,' Michael Lindberg,' Gregory G. Faust,' Mitchell L. Leibowitz,’
Royden A. Clark,' Ryan M. Layer,'-* Aaron R. Quinlan,'**> and Ira M. Hall'-3>

' Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22903, USA; “Department
of Computer Science, University of Virginia, Charlottesville, Virginia 22903, USA; 3Center for Public Health Genomics, University

of Virginia, Charlottesville, Virginia 22908, USA; 4Department of Public Health Sciences, University of Virginia, Charlottesville,
Virginia 22908, USA
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64 Tumors and 65 matched normals (1 dup.)

The Cancer Genome Atlas @ Jnderstanding genomics

fo improve cancer care

- 12 breast invasive carcinomas (BRCA)

- 3 colon adenocarcinomas (COAD)

- 18 glioblastoma multiforme (GBM)

- 6 lung adenocarcinoma (LUAD)

- 13 lung squamous cell carcinoma (LUSC)

- 11 ovarian serous cystadenocarcinoma (OV)

- 2 rectum adenocarcinoma (READ)
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Data (re++)processing

(

Ankit Malhotra Michael Lindberg

129 BAM files
: 99.7 billion readpalrs

14 TB raw data from

F|Iter|ng

inversion artifact

mapping quality
number mappings

simple repeats . —

support (3 readpairs)
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calculate
. library stats !

iquality control
> :(corrupt files, >

incorrect flags) :

. hyper-aggressive
. duplicate removal :

re-align discordant
reads with
NovoAlign

: 27039 inherited
—7 : germline

33,218 HIGH breakpoints
CONFIDENCE e,
CALLS 6179 de novo

. somatic breakpoints !



How do we assess the quality of
the somatic rearrangement calls?
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1. 64 out of 64 tumor / normal pairs cluster

as nearest nelghb
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2. Pooling yields accurate predictions of

somatically-acquired SVs in tumors.

Variants unique to a single cancer sample (N=6,179)
350 — I

*691
007 NBRCA

250 LUAD

200 - OV

GBM | LusC

1507 COAD
100 | READ

50
0 I 1

350 —

300 -

250 . .
Variants unique to a

200 single normal sample (N=323)

150
100

50

olB=ll oeem Al o ma O - IlJ-_jJﬂ;

Assuming all normal-only calls are false, suggests 5% somatic prediction error rate.
Likelihood of LOH suggests it is actually lower.
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Much worse it we just did a simple tumor/
normal comparison (the standard)

Variants unique to a single cancer sample (N=41,510)

1500

1000 -

500 -

Variants unique to a single normal sample (N=32,482)
1500 |- .

10001 ]
N ]

0 ||||I|||“||n lli
Somatic misclassification rate jumps from 5% with pooling to 86%!
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We have a high-qguality set of
somatic rearrangements from
multiple tumors.

But what do they tell us about
chromosome evolution in cancers?
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Observation 1.

We immediately noticed several
staggeringly complex

rearrangements (CRs).




A

staggeringly
complex
variant

253/296 |
breakpoi
tumor com ise a single
complex rearrangement

red = deletion
green = tandem
duplication
blue = inversion
grey = inter-chromosomal

GBM_6_T ; chainlD=1 ; numBreaks=253
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A couple of weeks later...

Massive Genomic Rearrangement Acquired
in a Single Catastrophic Event
during Cancer Development

Philip J. Stephens,’ Chris D. Greenman,' Beiyuan Fu,' Fengtang Yang,' Graham R. Bignell,' Laura J. Mudie,’
Erin D. Pleasance,! King Wai Lau,! David Beare,! Lucy A. Stebbings, Stuart McLaren,! Meng-Lay Lin, David J. McBride,’

Ignacio Varela,’ Serena Nik-Zainal,! Catherine Leroy,! Mingming Jia,! Andrew Menzies,' Adam P. Butler,?
Jon W. Teague,! Michael A. Quail,' John Burton,' Harold Swerdlow, Nigel P. Carter,’ Laura A. Morsberger,?2
Christine lacobuzio-Donahue,?2 George A. Follows,2 Anthony R. Green,3.4 Adrienne M. Flanagan,>:¢ Michael R. Stratton,1.7

P. Andrew Futreal," and Peter J. Campbell’3:4*

Chromothripsis: chromosome shattering in a single,
catastrophic event.
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Why are complex genomic
rearrangements important?

1) Punctuated genome evolution
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A relatively mutation free multiple myeloma genome with 1

cen

balanced rearrangement that produces 5 fusion genes

chr8:71mb

1zJ0 chr16:15mb cen

TPD52 - 5°

NCOA2 - 3’

NCOA2 -5’
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chr8:81mb

fusion products

TPDS52 - 5

(upstream noncodin

I

—

el chr7:113mb tel

from Ira Hall (UVA) and Elaine
Mardis (WUGSC)

chr8:128mb

-

MYH11- 5’

FOXP2-5

tel



Why are complex genomic
rearrangements important?

1) Punctuated genome evolution

2) Mechanistically interesting
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A model for chromothripis

AL s e DD DD

l catastrophic

shattering

fragment
l random ligation \ loss

(NHEJ)

-
Q%

f~ )l D@ - D %

Stephens et al., Cell, 2011



Identifying complex rearrangements

HYDRA-MULTI SV calls

//

|

Identify breakpoint “clusters” w/ BEDTOOLS
i | L] L] [ l 1 [ L] [

Identify chains of connected clusters w/ BEDTOOLS

chain |

, chain |l
simple

1 1 1 [ 1 // [ ] i L] [
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Observation 2.

Complex rearrangements are quite
common In tumor genomes.
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25% of all somatic breakpoints are part of complex
mutations. Not random.

Complex
Breakpoints rearrangements
Total % in % in Mild Extreme
(mean) clusters CGRs (3-9 breaks) (>9 breaks)

BRCA (n=12) 1657 (138)  4.2% 2.1% 11 0
COAD (n=3) 90 (30) 10% 4.4% 1 0
GBM (n=18) 1088 (60) 70% 49.3% 18 9 (7)
LUAD (n=6) 356 (59) 23% 16.8% 9 2 (2)
LUSC (n=13) 1806 (139) 26.7% 7.7% 27 2 (2)

OV (n=11) 1096 (100) 11.6% 4.8% 15 0
READ (n=2) 86 (43) 11.6% 11.6% 3 0

Total 6179 25% 13.6% 84 13 (11)
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Observation 3.

Complex rearrangements are very
common in glioblastoma.
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—nrichment in GBM. Compare to BRCA: more

breakpoints per sample, but rarely in complex loci

Complex
Breakpoints rearrangements
Total % in % in Mild Extreme
(mean) clusters CGRs (3-9 breaks) (>9 breaks)

BRCA (n=12) 1657 (138)  4.2% 2.1% 11 0
COAD (n=3) 90 (30) 10% 4.4% 1 0
GBM (n=18) 1088 (60) 70% 49.3% 18 9 (7)
LUAD (n=6) 356 (59) 23% 16.8% 9 2 (2)
LUSC (n=13) 1806 (139) 26.7% 7.7% 27 2 (2)

OV (n=11) 1096 (100) 11.6% 4.8% 15 0
READ (n=2) 86 (43) 11.6% 11.6% 3 0

Total 6179 25% 13.6% 84 13 (11)
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Observation 4.

Vast architectural diversity observead
for complex variants
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Focal amplification of EGFR
chr7 —_: -
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17 breaks

GBM-5 ’,_.-r“'-.#_- S

Multi-focal amplification

chri2 [\ = Ty

GBM-19 eyt LN ). U]
chainlD=1 = __—‘ws 0, i

56 breaks :,,""

Interchrom. co-amplification

'_ i B chr1
el -._5-.;.’."‘"’.-?-
gk e — N o
\% g
\ LUSC-7 4y
chainlD=1
12 breaks ;
(:/r
/

Thursday, July 25, 13

Mild Complex
chr3 chr? v [z B
Eim ~ " Sy
e WO b P AP B, &
Ret oy,
. 3 chr7
BRCA-1
chainlD=3

10 breaks

GBM-7

chainlD=2
43 breaks : .'

‘M_-:_ﬁﬁ-— ~
&y . =
han ot i S
Very complex Highly-rearranged
chrX Y 1 =) |
< o . i : ~'p, chrl chrio  _@% - il
“0". : N i A O 4 " ‘/"" ""*‘\\ \0
‘!L’ y \ : » j’ai 2 “ chr1
chr1g / J' 2 4' L 4 _ \ +
& / & / ,
A “:r.',,‘ ‘ .
SR \
t ~ |
\\ OV-11 '] / -
chainlD=1 = :
| 45 breaks - N | LUSC-11 :
- 7] = — chainlD=1
</ ohri2 : of - 79 breaks '
“1 n ]
| \ - N ) -
: - ’

2 (| F L <’
. T & o - o
& e
©

/] \
AT\
K '\ - rs > | !
’.’ . wﬂr‘ “ 0. 1"" M ’ A

.

Xy L\
.. ‘i L chr3



Chromothripis examples
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Observation 5.
Complex rearrangements have

elevated intra-tumor allele
frequencies
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Complex loci have higher allele frequencies

0.07

0.06 _

0.051 _

simple somatic variants;
n=1973

0.021- _

: Allele Frequency
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mild complex variants (3-19
breakpoints); n=333
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Why? Evidence that chromothriptic
medulloblastomas form extrachromosomal
circles (double minutes) containing
oncogenes

Genome Sequencing of Pediatric
Medulloblastoma Links Catastrophic DNA *
Rearrangements with TP53 Mutations

Tobias Rausch,’® David T.W. Jones,%'® Marc Zapatka,21® Adrian M. Stitz,"'® Thomas Zichner,’

Joachim Weischenfeldt,! Natalie Jager,® Marc Remke,2:5 David Shih,¢ Paul A. Northcott,® Elke Pfaff,2 Jelena Tica,’

Qi Wang,5 Luca Massimi,” Hendrik Witt,25 Sebastian Bender,25 Sabrina Pleier,2:5 Huriye Cin,2 Cynthia Hawkins,5:8
Christian Beck,> Andreas von Deimling,® Volkmar Hans,1° Benedikt Brors,2 Roland Eils,32° Wolfram Scheurlen,!1
Jonathon Blake,! Vladimir Benes,’ Andreas E. Kulozik,5 Olaf Witt,54 Dianna Martin,'2 Cindy Zhang,'2 Rinnat Porat,12
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Are brain tumors particularly prone to

chromothripsis?
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- Stephens et al. (2011) estimated an incidence of 1.3% in all tumors, and perhaps 25%
of bone cancers (by microarrays)

- Molenaar et al. (2012) estimated 11% of neuroblastoma samples (by sequencing)

- Rausch et al. (2012) estimated 13% of Medulloblastomas (by microarrays), strongly
correlated with P53 loss.

- We find that 40-50% ot GBM and LUSC samples have chromothripsis (by sequencing)
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Summary

- Complex rearrangements are quite common in
tumors.

- Many appear to be chromothripsis.

- 70% of glioblastomas have very complex
rearrangements

- Fitness possibly conferred by oncogene amplification

- Origin? Prevalence? Clinical utility?
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