A Bioconductor pipeline for the
analysis of ChlP-Seq experiments.

BioConductor 2013
Sangsoon Woo, Renan Sauteraud, Arnaud Droit, Xuekui Zhang,

Fred Hutchinson Cancer Reserach Center,
Seattle



Outline

* Introduction of ChIP-Seq

* Transcription factor binding sites

* Real data example

* Nucleosome positioning



ChiP-Seq

* Couple ChIP with HTS

* A typical ChIP-Seq experiment generates tens
of millions of short reads

* Read lengths are in the order of 50-150bps

* Because of chromatin, antibodies and
alignment biases, a control sample 1s still
recommended
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ChiP-Seq: control
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Aligners

* The first step consists of aligning raw reads to the reference
genome.

* There exists numerous “aligners” or “mappers”

* Here are a few popular ones: Bowtie, BWA, ELAND,
MAQ, etc

* Aligning raw reads of a sample can take from several
minutes to several days (depends on data, software and cpu)

* Most aligners will perform ““just fine” for ChIP- Seq



Aligned Reads

* Once reads have been aligned, we obtained a bed like file with
chromosome, start, end and strand information for each
sequence

* Some reads cannot be uniquely aligned, and are typically
discarded

* R and Bioconductor provide basic sequence alignment
capabilities and great input support (Biostrings, ShortReads,
Rsamtools)

* ShortReads can read most aligner data formats



Peak calling

* Aligned read data are transformed into a form that reflects local
densities of immunoprecipitated DNA fragments — Peaks

* Estimate locations where transcription factors(TF) were associated
with DNA — Peak summit

* Assign a score to each of these locations — Enrichment score

* Estimate a score threshold that leads to a desired false positive rate
(or FDR) — thresholding
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Peak callers for TF

MACS — Yong Zhang et al

* cisGenome — Hongkai J1 et al

USEQ — David Nix et al

PICS (our approach)



Why PICS?

* Measures of uncertainty

 Bidirectional reads

= (Automatically pair forward peaks with reverse peaks, and
estimate the DNA fragment length for each binding site)

* Correction for bias due to missing reads

* Resolve adjacent binding sites using mixture
models

 Parallel running with multiple CPUs

* Implemented in BioConductor



PICS R package

* Perform the segmentation and PICS fitting

* Efficient implementation in C

* Parallel running with multiple CPUs

* Estimate the FDR and plot the FDR vs. score
* Export to bed/wig

* Can be fine tuned based on your fragment length
distribution



Preprocessing

* Divide the genomic into regions by removing low reads
regions

* Scan the genome every 10 pbs with a sliding window of size
150 bps

— Minimum number of F reads on the left and R reads on the right
— Merge overlapping regions

* N disjoint candidate regions

* Model each region separately and process them in parrallel



Modeling bi-directional reads
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Modeling bi-directional reads
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Parameter estimation

* Use an ECM type algorithm

* E-step: Missing data are the cluster memberships and

the weights of the normal distribution. Explicite
formulation for the E-step

* Mstep: No closed form estimates, so split into two M
steps



Prior distributions

= Use Normal Inverse Gamma conjugate prior for
computational convenience
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* Hyper-parameters are chosen to match our prior
knowledge (eg. DNA fragment length 80-300 bps)
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The missing reads — the problem

" Genome is made of a short alphabet
(A,G,C,T), hence sequence repeats can
occur! So many short reads are discarded
due to no uniquely aligned positions.

" The amount of missing reads is unknown in
each unmappable region.

" Boundaries of unmappable regions are
known -- (the 0/1 mappability profile
obtained by exhaustive enumeration)
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The missing reads — our solution

= Use an idea of MclLachlan and Jones (1998)
for grouped and truncated data --

introducing latent variables:

 amount of missing reads (negative multinomial)

e positions of missing reads (same dist’n as
observed reads)

" We use EM algorithm for fitting hierarchical
mixture models incorporating these latent
variables
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Scoring binding events

* Compute an enrichment score to rank and
identify an interesting list of binding events.

* The enrichment score 1s defined as the ratio
(IP/ Control) of the observed F/R reads falling

in the 90% contours of the F/R distributions.

* By swapping the IP/Control samples, we can
get an estimate of the number of false positives
for a given threshold, and thus compute an
estimate of the FDR



Application to ER and FOXA1

* FOXAI data in human MCF7 human cells (Zhang et
al., 2008).

* 3,909,507 ChlIP-seq reads and 5,233,322 input DNA
control reads

* ER data data in human MCF7 human cells (Hu et al.,
2010)

e Use: PICS, rGADEM and MoT1V



Package ChipSeqBioC

* Packages:

* ShortRead: to read data

 BSGenome: to access genomic information

* PICS: to identify peak list

* TGADEM: de novo motif discovery

* MotlV: motifs identifications

* Rtracklayer: visualisation: interface to genome browser
* GenomeGraphs: visualisation

* Gviz: visualisation

* PING: to 1dentify nucleosome positioning



Average fragment length distribution

Average fragment length distribution
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Visualizing candidate region
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Vizualisation: GenomeGraphs
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Vizualisation: rtracklayer
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Validation

e de novo motif search

* rtGADEM 1s fast and can be used to process

10K+ sequences (binding site estimates +/-
100bps)

e [dentified motifs were then fed into MotlV and
analyzed with Jaspar



rGADEM + MoTiV results
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rGADEM + MoTiV results
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The biology — nhucleosomes (1)

* The nucleosome core particle (shown in the figure) consists of

about 147 bps of DNA wrapped around the histone octamer.
(H2A, H2B, H3, and H4)

* Adjacent nucleosomes are joined by 10-80 bp of ‘linker’ DNA.

Nucleosome “bead”
(8 histone molecules +
146 nucleotide pairs of DNA)



The biology — nucleosomes (2)

* DNA wrapped around nucleosomes is less accessible to
DNA binding proteins. Hence nucleosomes can regulate
processes that require access to DNA.

e.g. DNA replication or transcription

 Many gene regulatory proteins interact with nucleosomes,
such as modifying amino acids on N-terminal histone tails.

* So genome-wide profiling nucleosome positions is
important in understanding how transcriptional machinery

functions in vivo.



PING

We developed a new method, PING, for identifying nucleosome
positioning from sequencing data.

PING is developed based on PICS framework, hence inherits all
PICS features discussed above.

PING is different from PICS in:

— Address spatial relations of nucleosomes (Gaussian Markov Random
Field (GMRF) prior on nucleosome locations)

— Other details. (New segmentation, new model selection criteria, new
tuning parameters, and additional post-process step)



PING features

= PING handle data from large genome (e.g. mammal) in ~ 1hr.

= PING is robust to low read densities (simulation comparisons
shown later)

= PING handle both Sonication data and MNase data

MNase-seq Sonicated ChIP-seq
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PING R package

* Work for MNase and Sonicated with Single-End and
Paired-End sequencing data

* Perform the segmentation and PING fitting
 Efficient implementation in C

* Parallel running with multiple CPUs

* Export PING and postPING results to bed/wig

* Built-in plotting function for Visualization



plotSummary()
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Custom plot with Gviz
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lot with Gviz
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Conclusions

* ChIP 1s a powerful tool
— Transcription factors
— Epigenetics/Epigenomics

* Statistics/Bioinformatics challenges
— Alignment, detecting binding events, etc
— Still many challenges with ChIP-Seq



