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Organizing data in R

◮ Standard rectangular data sets (columns are variables, rows
are observations) are stored in R as data frames.

◮ The columns can be numeric variables (e.g. measurements or
counts) or factor variables (categorical data) or ordered factor
variables. These types are called the class of the variable.

◮ Useful functions to inspect data frames (and many other R
objects):

◮ str() provides concise description of the structure
◮ summary() summarizes each variable according to its class
◮ head() and tail() extracts the first few or last few rows

R packages

◮ Packages incorporate functions, data and documentation.

◮ We will be using the lme4 package from CRAN, which can be
installed from the Packages menu item or with
> install.packages("lme4")

◮ To use the package in an R session, it must be attached; e.g.,
> library("lme4")

Accessing documentation

◮ All functions and datasets in an R package must be
documented. Examples and tests are also often included.

◮ The data function provides names and brief descriptions of
the data sets in a package.
> data(package = "lme4")

Data sets in package ‘lme4’:

Dyestuff Yield of dyestuff by batch

Dyestuff2 Yield of dyestuff by batch

Pastes Paste strength by batch and cask

Penicillin Variation in penicillin testing

VerbAgg Verbal Aggression item responses

cake Breakage angle of chocolate cakes

cbpp Contagious bovine pleuropneumonia

sleepstudy Reaction times in a sleep deprivation

study

Lattice graphics

◮ One of the strengths of R is its graphics capabilities.

◮ There are several styles of graphics in R. Trellis graphics, as
implemented in the lattice package, is well-suited to the type
of data we will be discussing.

The Dyestuff data set

◮ The Dyestuff, Penicillin and Pastes data sets all come
from the classic book Statistical Methods in Research and
Production, edited by O.L. Davies and first published in 1947.

◮ The Dyestuff data are a balanced one-way classification of
the Yield of dyestuff from samples produced from six Batches
of an intermediate product. See ?Dyestuff.



The Dyestuff data set
> str(Dyestuff)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635

The effect of the batches

◮ To emphasize that Batch is categorical, we use letters instead
of numbers to designate the levels.

◮ Because there is no inherent ordering of the levels of Batch,
we will reorder the levels if, say, doing so can make a plot
more informative.

◮ It is not particularly important to estimate and compare yields
from these batches. Instead we wish to estimate the variability
in yields due to batch-to-batch variability.

◮ The Batch factor will be used in random-effects terms in
models that we fit.

Dyestuff data plot

> dotplot(reorder(Batch, Yield) ~ Yield, Dyestuff,
type = c("p", "a"), jitter.y = TRUE, ylab = "Batch",
xlab = "Yield of dyestuff (grams of standard color)")
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Dyestuff data plot

◮ The line joins the mean yields of the six batches, which have
been reordered by increasing mean yield.

◮ The vertical positions are jittered slightly to reduce
overplotting. The lowest yield for batch A was observed on
two distinct preparations from that batch.

A mixed-effects model for yield
> fm1 <- lmer(Yield ~ 1 + (1|Batch), Dyestuff)
> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

325.7 329.9 -159.8 327.4 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1763.7 41.996

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.81

◮ The fitted model fm1 has one fixed-effect parameter, the mean
yield, and one random-effects term, generating a simple,
scalar random effect for each level of Batch.

Extracting information from the model

◮ fm1 is an object of class "mer" (mixed-effects representation).

◮ Many extractor functions can be applied to such objects.

> fixef(fm1)

(Intercept)

1527.5

> ranef(fm1, drop = TRUE)

$Batch

A B C D E F

-17.60597 0.39124 28.56079 -23.08338 56.73033 -44.99302

> fitted(fm1)

[1] 1509.9 1509.9 1509.9 1509.9 1509.9 1527.9 1527.9 1527.9

[9] 1527.9 1527.9 1556.1 1556.1 1556.1 1556.1 1556.1 1504.4

[17] 1504.4 1504.4 1504.4 1504.4 1584.2 1584.2 1584.2 1584.2

[25] 1584.2 1482.5 1482.5 1482.5 1482.5 1482.5



Definition of linear mixed-effects models

◮ A mixed-effects model incorporates two vector-valued random
variables: the response, Y, and the random effects, B. We
observe the value, y, of Y . We do not observe the value of B.

◮ In a linear mixed-effects model the conditional distribution,
Y |B, and the marginal distribution, B, are independent,
multivariate normal (or“Gaussian”) distributions,

(Y|B = b) ∼ N (
Xβ + Zb, σ2I

)
, B ∼ N (

0, σ2Σ
)
, (Y |B) ⊥ B.

◮ The scalar σ is the common scale parameter; the
p-dimensional β is the fixed-effects parameter; the n × p X
and the n × q Z are known, fixed model matrices; and the
q × q relative variance-covariance matrix Σ(θ) is a positive
semidefinite, symmetric q × q matrix that depends on the
parameter θ.

Conditional modes of the random effects

◮ Technically, the reported random effects are not “estimates”,
because the random effects are not parameters.

◮ They can be viewed as the conditional means, E[B|Y = y],
evaluated at the estimated parameters. We can only evaluate
the conditional means for linear mixed models.

◮ These values are also the conditional modes and that concept
does generalize to other types of mixed models.

◮ For linear mixed models we can evaluate the conditional
standard deviations of these random variables and plot a
prediction interval. These intervals can be arranged in a
normal probability plot, sometimes called a“caterpillar plot”.

Caterpillar plot for fm1

> qqmath(ranef(fm1, postVar = TRUE), strip = FALSE)$Batch
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Mixed-effects model formulas

◮ In lmer the model is specified by the formula argument. As in
most R model-fitting functions, this is the first argument.

◮ The model formula consists of two expressions separated by
the ∼ symbol.

◮ The expression on the left, typically the name of a variable, is
evaluated as the response.

◮ The right-hand side consists of one or more terms separated
by ‘+’ symbols.

◮ A random-effects term consists of two expressions separated
by the vertical bar, (‘|’), symbol (read as“given”or“by”).
Typically, such terms are enclosed in parentheses.

◮ The expression on the right of the ‘|’ is evaluated as a factor,
which we call the grouping factor for that term.

Simple, scalar random-effects terms

◮ In a simple, scalar random-effects term, the expression on the
left of the ‘|’ is ‘1’. Such a term generates one random effect
(i.e. a scalar) for each level of the grouping factor.

◮ Each random-effects term contributes a set of columns to Z.
For a simple, scalar r.e. term these are the indicator columns
for the levels of the grouping factor.

Verbose fitting

◮ The optional argument verbose = TRUE causes lmer to print
iteration information during the optimization of the parameter
estimates.

◮ The quantity being minimized is the profiled deviance of the
model. The deviance is negative twice the log-likelihood. It is
profiled in the sense that it is a function of θ only — β and σ
are at their conditional estimates.



Obtain the verbose output for fitting fm1
> invisible(update(fm1, verbose = TRUE))

0: 319.76562: 0.730297

1: 319.73553: 0.962418

2: 319.65736: 0.869480

3: 319.65441: 0.844020

4: 319.65428: 0.848469

5: 319.65428: 0.848327

6: 319.65428: 0.848324

◮ The first number on each line is the iteration count —
iteration 0 is at the starting value for θ.

◮ The second number is the profiled deviance — the criterion to
be minimized at the estimates.

◮ The third and subsequent numbers are the parameter vector θ.

REML estimates versus ML estimates

◮ The default parameter estimation criterion for linear mixed
models is restricted (or “residual”) maximum likelihood
(REML).

◮ Maximum likelihood (ML) estimates (sometimes called“full
maximum likelihood”) can be requested by specifying REML =

FALSE in the call to lmer.

◮ Generally REML estimates of variance components are
preferred. ML estimates are known to be biased. Although
REML estimates are not guaranteed to be unbiased, they are
usually less biased than ML estimates.

◮ Roughly the difference between REML and ML estimates of
variance components is comparable to estimating σ2 in a
fixed-effects regression by SSR/(n − p) versus SSR/n, where
SSR is the residual sum of squares.

Re-fitting the model for ML estimates
> update(fm1, REML = FALSE)

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

333.3 337.5 -163.7 327.3 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.1 37.258

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

Recap of the Dyestuff model

◮ The model is fit as
lmer(formula = Yield ~ 1 + (1 | Batch), data = Dyestuff)

◮ There is one random-effects term, (1|Batch), in the model
formula. It is a simple, scalar term for the grouping factor
Batch with n1 = 6 levels. Thus q = 6.

◮ The model matrix Z is the 30× 6 matrix of indicators of the
levels of Batch.

◮ The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 30× 1 model matrix X are unity.

The Penicillin data

◮ Potency (measured as diameter of a clear area on a Petri dish)
of penicillin samples in a balanced, unreplicated two-way
crossed classification with the test medium, plate.

> str(Penicillin)

’data.frame’: 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4

> xtabs(~ sample + plate, Penicillin)

plate

sample a b c d e f g h i j k l m n o p q r s t u v w x

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Penicillin data plot
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Model with crossed simple random effects for Penicillin
> fm2 <- lmer(diameter ~ 1 + (1|plate) + (1|sample), Penicillin)
> fm2

Linear mixed model fit by REML

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

AIC BIC logLik deviance REMLdev

338.9 350.7 -165.4 332.3 330.9

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.71691 0.84671

sample (Intercept) 3.73030 1.93140

Residual 0.30242 0.54992

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.9722 0.8085 28.41

Fixed and random effects for fm2

◮ The model for the n = 144 observations has p = 1
fixed-effects parameter and q = 30 random effects from k = 2
random effects terms in the formula.

> fixef(fm2)

(Intercept)

22.972

> ranef(fm2, drop = TRUE)

$plate

a b c d e f

0.804547 0.804547 0.181672 0.337391 0.025953 -0.441203

g h i j k l

-1.375516 0.804547 -0.752641 -0.752641 0.960266 0.493109

m n o p q r

1.427422 0.493109 0.960266 0.025953 -0.285484 -0.285484

s t u v w x

-1.375516 0.960266 -0.908360 -0.285484 -0.596922 -1.219797

$sample

A B C D E F

2.187057 -1.010476 1.937898 -0.096895 -0.013842 -3.003742

Prediction intervals for random effects

Standard normal quantiles
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Likelihood ratio tests

◮ Nested models can be compared by the anova function

◮ It is safer to use REML = FALSE when doing LR tests

> fm2ML <- lmer(diameter ~ 1 + (1|plate) + (1|sample),
data = Penicillin, REML = FALSE)

> fm3ML <- lmer(diameter ~ 1 + (1|plate),
data = Penicillin, REML = FALSE)

> anova(fm3ML, fm2ML)

Data: Penicillin

Models:

fm3ML: diameter ~ 1 + (1 | plate)

fm2ML: diameter ~ 1 + (1 | plate) + (1 | sample)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3ML 3 617.71 626.62 -305.86

fm2ML 4 340.19 352.07 -166.09 279.52 1 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Models with crossed random effects

◮ All hierarchical linear models (HLMs) or“multilevel models”
are mixed models but not vice-versa

◮ The plate and sample factors in fm2 are crossed. They do not
represent levels in a hierarchy.

◮ There is no difficulty in defining and fitting models with
crossed random effects (meaning random-effects terms whose
grouping factors are crossed).

◮ Crossing of random effects can affect the speed with which a
model can be fit.

Models with crossed random effects

◮ Experimental situations with crossed random factors, such as
“subject”and“stimulus”, are common. We can and should
model such data according to its structure.

◮ The lme4 package is different from most other software for
fitting mixed models in that it handles fully crossed and
partially crossed random effects gracefully.



Recap of the Penicillin model

◮ The model formula is
diameter ~ 1 + (1 | plate) + (1 | sample)

◮ There are two random-effects terms, (1|plate) and
(1|sample). Both are simple, scalar (q1 = q2 = 1) random
effects terms, with n1 = 24 and n2 = 6 levels, respectively.
Thus q = q1n1 + q2n2 = 30.

◮ The model matrix Z is the 144× 30 matrix created from two
sets of indicator columns.

◮ The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 144 × 1 model matrix X are unity.

More complex models

◮ Models with covariates for random effects

◮ Generalized linear mixed models (glmer)

◮ Nonlinear mixed models (nlmer)

◮ See help(lmer)


