
This is page 1
Printer: Opaque this

1

R Bioconductor introduction

Robert Gentleman, Florian Hahne, Seth
Falcon, Martin Morgan and Paul Murrell

Abstract

In this lab we will cover some basic uses of R and also begin work-
ing with some of the Bioconductor data sets and tools. Topics covered
include basic R programming, R graphics, and working with envi-
ronments as hash tables Gentleman et al. (2005). We introduce the
primary data structures used to hold data from many different high-
throughput experiments and demonstrate different manipulations of
them. In addition, we will explore some visualization techniques for
gene expression data to get a feeling for R’s extended graphical
capabilities.

1.1 Introduction

In this tutorial you will learn some of the fundamental concepts in order
to use R for the analyis of genomic data. You will see how to manipulate
different data sets and use R and Bioconductor to explore and model your
data. You should be familiar with the basics of R programming like its
fundamental data structures, assignments, indexing and also have a basic
understanding of R’s very own object system.

1.2 Working with packages

The basic design of R and Bioconductor is modular, and a lot of the func-
tionality is provided by additional pieces of software called packages. There
are now hundreds of packages available for R and over 150 for Bioconduc-
tor. Before we begin working with real biological data, it is important that
you learn how to find, download and install different packages. There are
a number of different methods that can be used and over time we expect

2 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

them to become more standard. R packages are stored in libraries, you can
have multiple libraries on your computer, although most people have only
one on their personal machine. Packages must be downloaded and installed.
You need to do this only once. After that, each time you want to use the
package you must load it. You do this using either the library function or
the function require. Downloading packages can be done using the menu
on a distribution of R that has a GUI (this is either Windows or OS X). On
these platforms you simply select the packages you want and they are down-
loaded and installed, but they are not loaded into your R session, you must
do that. By default this mechanism will download the appropriate binary
packages. You can use the function install.packages to download a spec-
ified list of packages. One of the arguments to install.packages controls
whether package dependencies should also be downloaded and for Biocon-
ductor packages we strongly recommend setting this to TRUE. To make the
installation of Bioconductor packages as easy as possible, we provide a web-
accessible script called biocLite that you can use to install any Bioconductor
package along with its dependencies. You can also use biocLite to install pack-
ages hosted on CRAN. Here is a sample session illustrating how to use biocLite

to install the graph and xtable packages.

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("graph", "xtable"))

Exercise 1
What is the output of function sessionInfo?

Solutions:

> sessionInfo()

R version 2.5.0 RC (2007-04-22 r41275)

i386-apple-darwin8.9.1

locale:

C

attached base packages:

[1] "tools" "stats" "graphics" "grDevices" "utils" "datasets"

[7] "methods" "base"

other attached packages:

weaver codetools digest

"1.2.0" "0.1-1" "0.3.0"

1.3 Some Basic R

Before we begin, let’s make sure you are familiar with the basic data structures
in R and the fundamental operations that are necessary for both application

1. bioC introduction 3

of existing software and for writing you own short scripts. If you don’t have
problems answering the following five questions you are ready to proceed with
this chapter and learn about the great stuff you can do with your genomic data.
If not, it might be a good idea to go back to the excellent ’Introduction to R’
which you can find on the R foundation homepage at http://cran.r-project.

org/manuals/R-intro.html.

Exercise 2
a The simplest data structure in R is a vector. Can you create the following

vectors?

� x with elements 0.1, 1.1, 2.5 and 10

� integer vector y with elements 1 to 100

� a logical vector z indicating the elements of y that are below 10

� a named charactor vector pets with elements dog, cat and bird. You
can chose whatever names you like for you new virtual pets.

b What happens to vectors in arithmetic operations? What is the result of
the following expression?

> 2 * x + c(1, 2)

c Index vectors can be used to select subsets of elements of a vector. What
are the three different types of index vectors? How do we index a matrix
or an array?

d How can we select elements of a list? How do we create a list?

e What is the difference between a data.frame and a matrix?

http://cran.r-project.org/manuals/R-intro.html
http://cran.r-project.org/manuals/R-intro.html

4 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

Solutions:

a > x <- c(0.1, 1.1, 2.5, 10)

> y <- 1:100

> z <- y < 10

> pets <- c(Rex = "dog", Garfield = "cat",

+ Tweety = "bird")

b Arithmetic expressions in R are vectorized. The operations are performed
element by element. If two vectors of unequal lenght are used in the same
expression, R tries to recycle the shorter of the two vectors.

> 2 * x + c(1, 2)

[1] 1.2 4.2 6.0 22.0

c Index vectors can be of type logical , integer and character (for the special
case of named vectors).

> y[z]

[1] 1 2 3 4 5 6 7 8 9

> y[1:4]

[1] 1 2 3 4

> y[-(1:95)]

[1] 96 97 98 99 100

> pets["Garfield"]

Garfield

"cat"

Matrices and arrays can be indexed similar to vectors. Each dimension is
separated by a comma in the square brackets.

> m <- matrix(1:12, ncol = 4)

> m[1, 3]

[1] 7

d List items are selected using the $ operator or the [operator. The latter
accepts all three types of index vectors, the former can be used with named
lists only. Note that [returns a list even if only one element is selected.
You can use the[[operator to get to the content of a single list element.
List are created using the list function.

> l <- list(name = "Paul", sex = factor("male"),

+ age = 35)

> l$name

[1] "Paul"

> l[[3]]

[1] 35

e A matrix consists of elements of equal type. In a data.frame, each col-
umn may contain different types of elements (essentially it is a list with
dimension attributes).

1. bioC introduction 5

1.4 Structures for genomic data

The data from many high-throughput genomic experiments, such as microarray
experiments, can be summarized by a matrix of expression values. The matrix
has F rows and S columns, where F is the number of features on the chip and S
is the number of samples. In addition, one will have a data table that provides in-
formation on the samples (e.g., sex, age, and treatment status). The information
describing the samples, or phenotypes, can be represented as an S by V table,
where V is the number of covariates. In R, we use a data.frame to hold this phe-
notypic data, and we do acknowledge that it may contain information other than
phenotype under some circumstances. Note that the columns of the expression
matrix must align with the rows of the phenoData table. The ExpressionSet class
provides a container for the expression matrix and phenoData and keeps the two
properly aligned, e.g after subsetting operations.

In Bioconductor we have taken the approach that these data should be stored
in a single data structure that can be used to easily obtain subsets of the samples,
or of the features (often genes).

We begin by accessing a small data set that is provided with the Biobase pack-
age. First load the Biobase package and then the data set sample.ExpressionSet.
We assign it to the object exSet in order to get rid of the bulky name. At this time
we also load the hgu95av2 package that contains metadata for the experiment.

> library("Biobase")

> library("hgu95av2")

> data(sample.ExpressionSet)

> exSet <- sample.ExpressionSet

> exSet

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

phenoData

sampleNames: A, B, ..., Z (26 total)

varLabels and varMetadata:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31739_at (500 total)

varLabels and varMetadata: none

experimentData: use 'experimentData(object)'

Annotation [1] "hgu95av2"

The exSet object is an instance of the S4 ExpressionSet class. You can
get help (a description of the class) by using the ? operator; Try typing
class ? ExpressionSet. Subsetting of exSet works similar to subsetting of
data.frames.

> class(exSet)

6 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

[1] "ExpressionSet"

attr(,"package")

[1] "Biobase"

> slotNames(exSet)

[1] "assayData"

[2] "phenoData"

[3] "featureData"

[4] "experimentData"

[5] "annotation"

[6] ".__classVersion__"

> exSet$sex

[1] Female Male Male Male Female

[6] Male Male Male Female Male

[11] Male Female Male Male Female

[16] Female Female Male Male Female

[21] Male Female Male Male Female

[26] Female

Levels: Female Male

> exSet[1,]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 1 features, 26 samples

element names: exprs, se.exprs

phenoData

sampleNames: A, B, ..., Z (26 total)

varLabels and varMetadata:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData

rowNames: AFFX-MurIL2_at

varLabels and varMetadata: none

experimentData: use 'experimentData(object)'

Annotation [1] "hgu95av2"

> exSet[, 1]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 1 samples

element names: exprs, se.exprs

phenoData

rowNames: A

varLabels and varMetadata:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31739_at (500 total)

1. bioC introduction 7

varLabels and varMetadata: none

experimentData: use 'experimentData(object)'

Annotation [1] "hgu95av2"

You can extract the values in the slots using the @ operator, however, if accessor
functions are available, it is better to use them instead of the @ operator. The
names of the slots can be obtained using slotNames, as shown above. Extract the
values for some of the named slots.

Exercise 3
This exercise shows you how to take subsets of ExpressionSets. This idea is im-
portant when writing your own code and often when analyzing data you will want
to work only on a subset of a larger data set.

a What happens when we subset exSet? What kind of an object do we get?

b What happened to the phenotypic data? What happened to the expression
data?

c Imagine that your boss has asked you to work specifically on the female
subjects. To do that the first step is to subset exSet by selecting all female
samples.

Solutions:

a Subsetting obects of class ExpressionSet will again result in objects of the
same class:

> is(exSet[1,], "ExpressionSet")

[1] TRUE

b Phenotypic as well as expression data is subset along with exSet:

> dim(pData(exSet[, 1]))

[1] 1 3

> dim(exprs(exSet[, 1]))

[1] 500 1

c > exSet[, exSet$sex == "Female"]

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 11 samples

element names: exprs, se.exprs

phenoData

rowNames: A, E, ..., Z (11 total)

varLabels and varMetadata:

sex: Female/Male

type: Case/Control

score: Testing Score

featureData

featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at, ..., 31739_at (500 total)

varLabels and varMetadata: none

experimentData: use 'experimentData(object)'

Annotation [1] "hgu95av2"

8 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

1.4.1 Building an ExpressionSet From Scratch

Many readers will have their own data and want to create an instance of the
ExpressionSet from it. In the next set of exercises, you will learn how to create a
new ExpressionSet instance given a matrix of expression values and a data.frame
containing the phenoData. Other tutorials will cover the creation of the expression
matrix from raw CEL files for microarray data.

You can save objects in your R session to a file using the save function. By
default, this will create a file in R’s internal binary format. The same binary file
produced by a call to save can be used on Linux, OS X, and Windows. In most
cases the saved file will have an extension .rda, and hence they are sometimes
referred to as rda files. You can load the objects saved in an rda file using the
load function.

In the code below, we will load a large matrix of expression values stored in
the file ALLmat.rda. The example assumes that the file is in the current working
directory. You can change the working directory using setwd. The file is supplied
with the BiocCaseStudies package, and you will need to either specify the path
to that package or set the current working directory to that package. If you are
using the Windows GUI you can set the directory using a menu, but otherwise
the code below will set the working directory appropriately.

> getwd()

[1] "/Users/robert/bioC/Docs/Books/useR-book/R_bioc_intro"

> ls()

[1] "Rvers"

[2] "basename"

[3] "biocUrls"

[4] "exSet"

[5] "l"

[6] "m"

[7] "pets"

[8] "repos"

[9] "sample.ExpressionSet"

[10] "x"

[11] "y"

[12] "z"

> dataPath = system.file("extdata",

+ package = "BiocCaseStudies")

> oldLoc = setwd(dataPath)

> dir()

[1] "ALL-sample-info.txt"

[2] "ALL-varMeta.txt"

[3] "ALLmat.rda"

> load("ALLmat.rda")

> ls()

[1] "ALLmat"

[2] "Rvers"

1. bioC introduction 9

[3] "basename"

[4] "biocUrls"

[5] "dataPath"

[6] "exSet"

[7] "l"

[8] "m"

[9] "oldLoc"

[10] "pets"

[11] "repos"

[12] "sample.ExpressionSet"

[13] "x"

[14] "y"

[15] "z"

The ls function lists the R objects in your current working environment. You
should see a new object named ALLmat appear after the call to load.

Exercise 4
a Open and read the help page for load.

b Determine the class and dimension of the matrix.

c How would you set the working directory back to what it was, before we
changed it to the extdata directory of the BiocCaseStudies package?

Solutions:

a > help(load)

b > class(ALLmat)

[1] "matrix"

> dim(ALLmat)

[1] 12625 128

c > setwd(oldLoc)

Covariates describing the samples in this experiment have been saved to a
whitespace-delimited text file called ALL-sample-info.txt. Delimited text files
are common and can be produced from Microsoft Excel by saving as a “csv” file
(this stands for comma separated values, but the separator does not have to be
a comma).

R’s read.table function is a powerful tool for reading delimited text files.
Below, you will use it to read in the phenoData.

> samples <- read.table(file.path(dataPath,

+ "ALL-sample-info.txt"), header = TRUE,

+ check.names = FALSE)

Exercise 5
a What class does read.table return?

b Determine the column names of samples. Hint: apropos("name").

10 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

c Examine the sex and age of the 15th and 30th samples. Do the same for
the sample with cod matching 11005.

Solutions:

a > class(samples)

[1] "data.frame"

b > names(samples)

[1] "cod" "diagnosis"

[3] "sex" "age"

[5] "BT" "remission"

[7] "CR" "date.cr"

[9] "t(4;11)" "t(9;22)"

[11] "cyto.normal" "citog"

[13] "mol.biol" "fusion protein"

[15] "mdr" "kinet"

[17] "ccr" "relapse"

[19] "transplant" "f.u"

[21] "date last seen"

c > samples[c(15, 30), c("sex", "age")]

sex age

09008 M 41

20002 F 58

> samples[samples$cod == "11005",

+ c("sex", "age")]

sex age

11005 M 27

To make the phenoData more self-documenting, we have a file named
ALL-varMeta.txt that gives a description for each column of samples. You can
use read.table to read this file into an R object.

> varInfo <- read.table(file.path(dataPath,

+ "ALL-varMeta.txt"), header = TRUE,

+ colClasses = "character")

> varInfo[c("sex", "cod", "mol.biol"),

+ , drop = FALSE]

labelDescription

sex Gender of the patient

cod Patient ID

mol.biol molecular biology

Bioconductor’s Biobase package provides a class called AnnotatedDataFrame
that allows you to store the column descriptions with the data. Create an
AnnotatedDataFrame instance for our phenoData by following the example below.

> pd <- new("AnnotatedDataFrame",

+ data = samples, varMetadata = varInfo)

1. bioC introduction 11

Now that you have a matrix of expression values (ALLmat) and an Annotated-
DataFrame containing the phenotype information (pd), you are ready to put the
pieces together and create an ExpressionSet .

> ALLSet <- new("ExpressionSet",

+ exprs = ALLmat, phenoData = pd,

+ annotation = "hgu95av2")

The annotation argument is intended to hold the name of the R package that
provides annotation data for the chip used in the experiment. In this case, the
appropriate annotation package is hgu95av2.

Exercise 6
What other tools are there for documenting an ExpressionSet instance? Can you
add PubMed IDs for papers describing the data?

Solutions: You need to read the manual page for the ExpressionSet class. Yes.

Now, how can you extract information from the ExpressionSet you have cre-
ated? A number of accessor functions are available to extract data from an
ExpressionSet instance. You can access the columns of the phenotype data (an
AnnotatedDataFrame instance) using $. It sometimes might be necessary to quote
the column names if they contain white space or other special characters.

> ALLSet$sex[1:5] == "F"

[1] FALSE FALSE TRUE FALSE FALSE

> ALLSet$"t(9;22)"[1:5]

[1] TRUE FALSE NA FALSE FALSE

You can retrieve the names of the features using featureNames. For many
microarray datasets, the feature names are the probeset identifiers.

> featureNames(ALLSet)[1:5]

[1] "1000_at" "1001_at" "1002_f_at"

[4] "1003_s_at" "1004_at"

The unique identifiers of the samples in the data set are available via the
sampleNames method. The varLabels method lists the column names of the
phenotype data:

> sampleNames(ALLSet)[1:5]

[1] "01005" "01010" "03002" "04006"

[5] "04007"

> varLabels(ALLSet)

[1] "cod" "diagnosis"

[3] "sex" "age"

[5] "BT" "remission"

[7] "CR" "date.cr"

12 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

[9] "t(4;11)" "t(9;22)"

[11] "cyto.normal" "citog"

[13] "mol.biol" "fusion protein"

[15] "mdr" "kinet"

[17] "ccr" "relapse"

[19] "transplant" "f.u"

[21] "date last seen"

You can extract the expression matrix and the AnnotatedDataFrame of sample
information using exprs and phenoData, respectively:

> mat <- exprs(ALLSet)

> adf <- phenoData(ALLSet)

1.4.2 Functions

Writing functions in R is quite easy. All functions take inputs and return values.
In R the value returned by a function is either the value that is explicitly returned
by a call to the function return or it is simply the value of the last expression.
So, the two functions below will return identical values.

> sq1 <- function(x) return(x * x)

> sq2 <- function(x) x * x

These functions are vectorized. This means you can pass a vector x to the function
and each element of x will be squared. Note that if you use two vectors of unequal
length for any vectorized operation R will try to recycle the shorter one. While
this can be useful for certain applications it can also lead to unexpected results.

Exercise 7
In this exercise we want you to write a function that we will use in the next
section. It relies on the R function paste and you should read the manual page.
It should take a string as input and return that string with a caret prepended.
Let’s call it ppc, what we want is ppc("xx") returns "^xx".

Solutions:

> ppc <- function(x) paste("^", x,

+ sep = "")
One of the places that user defined functions are often used is with the apply

family of functions and in the next section we will see some examples.

1.4.3 The apply functions

In R a great deal of work is done by applying some function to all elements
of a list, matrix or array. There are several functions available for you to use,
apply, lapply, sapply are the most commonly used. The function eapply is also
available for applying a function to each element of an environment. You will
learn more about how to create and how to work with environments in the next

1. bioC introduction 13

section. To understand how the apply functions work we will use them to explore
some of the metadata for the HGU95Av2 chips. Since these data are stored in
environments we will make use of the eapply function. The hgu95av2MAP contains
the mappings between Affymetrix identifiers and chromosome band locations. For
example, in the code below we find the chromosome band that the gene, for probe
1001_at (TIE1) maps to.

> library("hgu95av2")

> hgu95av2MAP$"1001_at"

[1] "1p34-p33"

We can extract all of the map locations for a particular chromosome or part of a
chromosome by using regular expressions and the apply family of functions. First
let’s be more explicit about the problem, say we want to find all genes that map
to the p arm of chromosome 17. Then we know that their map positions will all
start with the characters 17p. This is a simple regular expression, ^17p, where
the caret, ^, means that we should match the start of the word. We do this in
two steps, first we use eapply and grep and ask for grep to return the value that
matched.

> myPos = eapply(hgu95av2MAP, function(x) grep("^17p",

+ x, value = TRUE))

> myPos = unlist(myPos)

> length(myPos)

[1] 191

Here we used an anonymous function to process each element of the hgu95av2MAP

environment. We could have named it and then used it.

> f17p = function(x) grep("^17p",

+ x, value = TRUE)

> myPos2 = eapply(hgu95av2MAP, f17p)

> myPos2 = unlist(myPos2)

> length(myPos2)

[1] 191

Exercise 8
Use the function ppc that you wrote in the previous exercise to create a new
function that can find and return the probes that map to any chromosome (just
prepend the caret to the chromosome number) or the chromosome number with
a p or a q after it.

Solutions:

> myFindMap = function(mapEnv, which) {

+ myg = ppc(which)

+ a1 = eapply(mapEnv, function(x) grep(myg,

+ x, value = TRUE))

+ unlist(a1)

+ }

14 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

1.4.4 Environments

In R, an environment is a set of symbol-value pairs. These are very similar to
lists, but there is no natural ordering of the values and so you cannot make use of
numeric indices. Otherwise they behave the same way. In the previous section you
have already used an environment that stored the mapping between Affymetrix
identifiers and chromosome band locations. Here, you will learn how to work
with your own environemnts. We first create an environment and carry out some
simple tasks, such as storing things in it, remove things from it, and listing the
contents.

> e1 <- new.env(hash = TRUE)

> e1$a <- rnorm(10)

> e1$b <- runif(20)

> ls(e1)

[1] "a" "b"

> xx <- as.list(e1)

> names(xx)

[1] "a" "b"

> rm(a, envir = e1)

Exercise 9
In this exercise you will learn how to create and environment and to place some
objects into it.

a Create an environment and put a copy of exSet into it.

b Fit a linear model to the data x=1:10, y=2 * x + rnorm(10, sd=0.25),
and also place this into your environment.

c Write a function, myExtract, that takes an environment as an argument
and returns a list, one element is the variable score from exSet and the
other is the vector of coefficients from the linear model.

1. bioC introduction 15

Solutions:

a > theEnv <- new.env(hash = TRUE)

> theEnv$exSet <- exSet

b > x <- 1:10

> y <- 2 * x + rnorm(10, sd = 0.25)

> model <- lm(y ~ x)

> theEnv$model <- model

c > myExtract <- function(env) {

+ eset <- env$eset

+ model <- env$model

+ return(list(score = exSet$score,

+ coeff = model$coeff))

+ }

> myExtract(theEnv)

$score

[1] 0.75 0.40 0.73 0.42 0.93 0.22 0.96

[8] 0.79 0.37 0.63 0.26 0.36 0.41 0.80

[15] 0.10 0.41 0.16 0.72 0.17 0.74 0.35

[22] 0.77 0.27 0.98 0.94 0.32

$coeff

(Intercept) x

0.09544193 1.97579576

1.5 Something Harder

In one of the following tutorials will spend some time discussing machine learning
(ML), but here we will just use one simple algorithm, k-nearest neighbors (knn)
to make predictions. You should read the R manual page for a description of knn.

> library("class")

> apropos("knn")

[1] "knn" "knn.cv" "knn1"

The knn algorithm predicts the class of a given observation (the test case) ac-
cording to a majority vote of the k nearest neighbors in the training set. We will
show how you can use this to predict the case/control status of sample 1, given
the expression data on samples 2 through 26.

> exprsExSet <- exprs(exSet)

> classExSet <- exSet$type

> esub <- exSet[, -1]

> pred1 <- knn(t(exprs(esub)), exprs(exSet)[,

+ 1], esub$type)

> classExSet[1]

16 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

[1] Control

Levels: Case Control

Exercise 10
In this exercise we want you to write a simple cross-validation function (note that
knn.cv does this already in a far more efficient way).

a Write a function, that takes an ExpressionSet and a character giving the
name of the covariate as its input and carries out a leave-one-out set of
predictions over all samples (i.e. leaving out the first sample, second sample,
...). Your function should return the vector of predicted values for the given
covariate.

b Modify your function to allow the user to specify some of the parameters
for knn, such as k.

1. bioC introduction 17

Solutions:

a > predEset <- function(exSet, cov) {

+ nc <- ncol(exSet)

+ pred <- character(nc)

+ for (i in 1:nc) {

+ esub <- exSet[, -i]

+ pred[i] <- as.character(knn(t(exprs(esub)),

+ exprs(exSet)[, i],

+ esub[[cov]]))

+ }

+ return(pred)

+ }

> predEset(exSet, "type")

[1] "Control" "Control" "Control"

[4] "Case" "Control" "Control"

[7] "Control" "Control" "Case"

[10] "Case" "Case" "Case"

[13] "Case" "Control" "Control"

[16] "Case" "Control" "Case"

[19] "Case" "Case" "Case"

[22] "Case" "Control" "Case"

[25] "Case" "Case"

b Use the ... argument in the definition of you function to pass all undefined
arguments to knn.

> predEset <- function(exSet, cov,

+ ...) {

+ nc <- ncol(exSet)

+ pred <- character(nc)

+ pred <- character()

+ for (i in 1:nc) {

+ pred[i] <- as.character(knn(t(exprs(esub)),

+ exprs(exSet)[, i],

+ esub[[cov]], ...))

+ }

+ return(pred)

+ }

1.5.1 Gene Ontology

This next code chunk shows how to use apply-type functions to extract GO
terms in the molecular function ontology, for each Affymetrix probe set. The
environment hgu95av2GO provides mappings between Affymetrix IDs and GO
terms via EntrezGene IDs. On first glance the code looks quite complicated but
all of the elements have already been used in the previous sections. So at this
point it should be easy for you to understand what is going on.

18 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

> library("GO")

> library("hgu95av2")

> affyGO <- as.list(hgu95av2GO)

> affyMF <- lapply(affyGO, function(x) {

+ onts <- sapply(x, function(z) z$Ontology)

+ if (is.null(unlist(onts)) ||

+ is.na(unlist(onts)))

+ NA

+ else unique(names(onts)[onts ==

+ "MF"])

+ })

Exercise 11
a How are the GO terms stored? What information is available for each?

b What are the evidence codes and what do they mean?

c Turn this code into a function that would allow users to obtain either the
MF, BP or CC data.

d Extend this function to allow the user to include only given evidence codes.
(Or if you think it better - to exclude specific codes).

1. bioC introduction 19

Solutions:

a > names(hgu95av2GO$"35889_at"[[1]])

[1] "GOID" "Evidence" "Ontology"

b see help for hgu95av2GO (? hgu95av2GO)

c > getGO <- function(ontology) {

+ affyGO = as.list(hgu95av2GO)

+ if (!ontology %in% c("MF",

+ "BP", "CC"))

+ stop("invalid ontology identifier")

+ affyOnts = lapply(affyGO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ if (is.null(unlist(onts)) ||

+ is.na(unlist(onts)))

+ NA

+ else unique(names(onts)[onts ==

+ ontology])

+ })

+ return(affyOnts)

+ }

> getGO("MF")[10:12]

$`226_at`

[1] "GO:0000166" "GO:0005515"

[3] "GO:0008603" "GO:0016301"

[5] "GO:0030552"

$`388_at`

[1] "GO:0005515" "GO:0016303"

[3] "GO:0035014"

$`33680_f_at`

[1] NA

d > getGO2 <- function(ontology, evidence) {

+ affyGO = as.list(hgu95av2GO)

+ if (!ontology %in% c("MF",

+ "BP", "CC"))

+ stop("invalid ontology identifier")

+ affyOnts = lapply(affyGO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ evs = sapply(x, function(z) z$Evidence)

+ if (is.null(unlist(onts)) ||

+ is.na(unlist(onts)) ||

+ is.null(unlist(evs)) ||

+ is.na(unlist(evs)))

+ NA

+ else unique(names(onts)[onts ==

+ ontology & evs == evidence])

+ })

+ return(affyOnts)

+ }

> getGO2("MF", "IEA")[10:12]

$`226_at`

[1] "GO:0000166" "GO:0008603"

[3] "GO:0016301" "GO:0030552"

$`388_at`

[1] "GO:0035014"

$`33680_f_at`

[1] NA

20 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

1.6 Finding help in R

In Section 1 you have already learned about the ? operator and how you can get
information about a certain R function or object. In addition there are a lot of
other sources for help in and out of R. Function apropos can be used to find
objects in the search path partially matching the given character string. find

also locates objects, yet in a more restrictive manner.

> apropos("mean")

[1] "kmeans" "weighted.mean"

[3] "colMeans" "mean"

[5] "mean.Date" "mean.POSIXct"

[7] "mean.POSIXlt" "mean.data.frame"

[9] "mean.default" "mean.difftime"

[11] "rowMeans"

> find("mean")

[1] "package:base"

If you want to get information about a certain topic or concept, try help.search.
The function searches the help system for documentation matching a given char-
acter string in the (file) name, alias, title, concept or keyword entries. Names and
titles of the matched help entries are displayed.

> help.search("mean")

Moreover there is a wealth of information just waiting for you out in the web: For
many of the usual R-related questions you may most likely find an answer in the
R-FAQ at http://cran.r-project.org/faqs.html. A more specialized source
for help are the R and Bioconductor mailing lists (http://www.r-project.org/
mail.html, http://www.bioconductor.org/mailList.html). You can subscribe
to different sublists, regarding your interests and level of expertise and post your
questions to the R society. Before doing so, you should by all means read the
posting guides. Many questions on the mailing lists will most likely not be an-
swered because major posting rules have been violated. It is also a good idea
to search the online mailing archives before posting a question. Most of them
have already been asked and answered by someone else. A searchable Bioconduc-
tor archive can be found at http://dir.gmane.org/gmane.science.biology.

informatics.conductor, the R archives at http://dir.gmane.org/index.php?

prefix=gmane.comp.lang.r.. All of these links can of course also be found on
the Bioconductor and R-Project webpages.

Exercise 12
a There are a number of different plotting functions available. Can you find

them?

b Try to find out how to do a Mann-Whitney test.

c Take a look at the R posting guide and find out about the most common
mistakes when posting a question.

http://cran.r-project.org/faqs.html
http://www.r-project.org/mail.html
http://www.r-project.org/mail.html
http://www.bioconductor.org/mailList.html
http://dir.gmane.org/gmane.science.biology.informatics.conductor
http://dir.gmane.org/gmane.science.biology.informatics.conductor
http://dir.gmane.org/index.php?prefix=gmane.comp.lang.r.
http://dir.gmane.org/index.php?prefix=gmane.comp.lang.r.

1. bioC introduction 21

d Use the searchable R mail archive and find out how to color tick marks in
a plot with the segments function. You may need this information in one
of the following exercises! [Hint: Try the keywords ’plot’, ’tick’ ’labels’ and
’colour’]

Solutions:

a > apropos("plot")

[1] ".__M__Makesense:geneplotter"

[2] ".__M__imageMap:geneplotter"

[3] ".__T__Makesense:geneplotter"

b > help.search("mann-whitney")

1.7 Graphics

Graphics and visualization are important issues when dealing with complex data
like the ones typicaly found in biological science. In this section you will work
through some examples that allow you to create very general plots in R. Both
R and Bioconductor offer a range of functions that generate various graphical
representations of your data. For each function there are usually numerous pa-
rameters that enable the user to tailor the output to the specific needs. We only
touch on some of the issues and tools. Interested readers should look at Chapter
10 of Gentleman et al. (2005) or for even more detail Murrell (2005).

The function plot can be used to produce dot plots. Read through its docu-
mentation (? plot) and also take a look into the documentation for par, which
controls most of the parameters for R’s base graphics. We now want to use the
plot function to compare the gene expression intensities of two samples from our
data set.

> x <- exprs(exSet[, 1])

> y <- exprs(exSet[, 3])

> plot(x, y)

From the plot in Figure 1.1 we can see that the measurements for each probe
are highly correlated between the two samples. They form an almost perfect line
along the 45 degrees diagonal.

Exercise 13
The axis annotation of the plot in Figure 1.1 is not very informative. Can you add
more meanigful axis labels and a title to the plot? Can you change the plotting
symbols? Add the 45 degrees diagonal to the plot.

22 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

●●●●●●
●●●●

●

●●●●
●●●●
●●●

●

●●●●●●●●●●●●●●●
●●●

●

●●●

●

●

●

●

●

●

●●●
●

●
●

●●●●
●●●●●

●

●●●●
●●●●

●

●●●●●●●●●●

●

●
●

●

●

●●●●●●

●

●●●
●

●
●●●●●●●

●
●●

●
●●
●●

●●●●

●
●●●●●●●●●
●

●●

●

●●
●●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●●
●●●

●●
●●●

●
●●●

●

●●
●

●

●

●●●●

●

●●
●

●

●●
●

●

●
●

●

●

●●●

●

●●
●

●

●●●●●●
●

●●●●●

●
●

●●●●

●

●●
●

●

●

●●
●

●●●
●

●

●

●
●●

●

●●●●●●
●

●
●

●●●●●●
●

●●●●
●
●●

●

●●

●

●

●

●

●●
●

●●●●
●●●●●●
●●

●

●
●●

●
●●●

●
●

●

●

●●●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●●●●●●●
●

●

●

●●●
●

●

●
●

●●●
●

●●●

●
●

●●
●

●
●

●
●
●

●
●

●

●

●

●●●●●●
●●●●●

●

●
●●●●
●●●●●

●
●

●

●

●●
●●

●●●●●●
●●

●

●

●
●

●

●
●●●●●●

●●●●●●●
●

●●●
●●●●
●

●●●

●

●●●●
●

●
●●●●●●

●●
●●●

●● ●

●●●
● ●

●

●
●●

●

●
●●

●

●●
●●

●●

●

●●

●●●●
●●

●●

● ●

●

●

●

●
●

●●●
●●●●●

●
●

●
●

●●

0 2000 4000 6000 8000 10000

0
20

00
40

00
60

00
80

00

x

y

Figure 1.1. Scatter plot of expression intensities for two samples.

Solutions:

> plot(x, y, xlab = "gene expression sample #1",

+ ylab = "gene expression sample #3",

+ main = "scatterplot of expression intensities",

+ pch = 20)

> abline(a = 0, b = 1)

●
●●●●●

●
●●●

●

●●●●
●

●●
●

●
●●

●

●●●●● ●●●●●●●
●●●
●●●

●

●●●

●

●

●

●

●

●

●●●
●

●
●

●
●

●●
●●

●●●

●

●●●●
●●●

●

●

●●●●
●
●

●●
●●

●

●
●

●

●

●●●●●●

●

●●●

●
●

●●●●
●●●

●

●●

●

●●
●●

●●●●

●

●●●●●●●●●

●

●●

●

●●
●●●●

●
●●

●

●●
●
●●

●

●

●

●●

●

●
●●●●

●
●●

●●

●
●

●
●

●●
●

●

●
●●

●

●

●●●●

●

●●

●

●

●●
●

●

●
●

●

●

●●
●

●

●●

●

●

●●●●●●

●

●●●●●

●

●
●●●●

●

●●

●

●

●

●●

●

●●●
●

●

●

●

●●

●

●
●

●●
●●

●
●

●
●

●●●
●

●

●
●●●●

●
●●

●

●●

●

●

●

●

●●

●
●●

●●
●●●●●●
●●

●

●

●●

●
●●●

●
●

●

●

●●●●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●●●●●●●

●

●

●

●●●
●

●

●
●

●●●
●

●●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●
●

●
●

●●●
●

●

●
●●●

●
●●●●●

●
●

●

●

●
●

●●

●●●●
●●

●
●

●

●

●

●

●

●
●

●●●●●
●
●●●●●●

●

●●●
●

●●●
●

●
●●

●

●●●●
●

●

●●●●●
●

●●

●●
●

●● ●

●●
●

● ●

●

●
●●

●

●

●●
●

●●

●●

●●

●

● ●

●●●●

●●
●●

● ●

●

●

●

●

●

●●
●

●
●

●●●
●

●

●

●

●●

0 2000 4000 6000 8000 10000

0
20

00
40

00
60

00
80

00

scatterplot of expression intensities

gene expression sample #1

ge
ne

 e
xp

re
ss

io
n

sa
m

pl
e

#3

Figure 1.2. Scatter plot of expression intensities
for two samples.

Visualization is an important aspect when trying to detect possible problems or

1. bioC introduction 23

inconsistencies in the data. In the simplest case one can spot such problems by
looking at distribution summaries. A good example for this is the dependency of
the measurement intensity of a microarray probe on its GC-content. To demon-
strate this, we need to load a more extended data set from the CLL package which
includes the raw measurement values for each probe from an experiment using
the Affy hguav2 chip. The basecontent from package matchprobes calculates
the base frequencies for each probe based on a sequence vector.

> library("CLL")

> library("matchprobes")

> library("hgu95av2probe")

> library("hgu95av2cdf")

> library("RColorBrewer")

> data("CLLbatch")

> baseCt = basecontent(hgu95av2probe$sequence)

> gcCt = ordered(baseCt[, "C"] +

+ baseCt[, "G"])

We now need to match the probes via their position on the array to the expression
values in the CLLbatch data set. Since we have several samples in the set, we will
compute mean expression values for each probe.

> iab = get("xy2i", "package:hgu95av2cdf")(hgu95av2probe$x,

+ hgu95av2probe$y)

> meanlogint = rowMeans(log2(exprs(CLLbatch)[iab,

+]))

Finally, we can plot the log-transformed expression data of the probes grouped
by their GC-content. Our data consists of thousands of points, thus looking at
the whole bulk of data doesn’t make much sense. Instead, we want to focus
on the important features provided by distribution summaries. We can get the
most comprehensive summary of the data by means of a box plot. Read the
documentation of function boxplot if you don’t know how to interpret such plots.

> mycol <- colorRampPalette(brewer.pal(9,

+ "GnBu"))(nlevels(gcCt))

> exlab <- expression(log[2] ~ intensity)

> boxplot(meanlogint ~ gcCt, col = mycol,

+ outline = FALSE, xlab = "Number of G and C",

+ ylab = exlab)

Density plots are less detailed than box plots, but sometimes you need a more
concise representation of the shape of the distributions. We can plot multiple dis-
tribution densities using the function multidensity from package geneplotter.
For this plot we will focus on the ten most popular groups.

> library("geneplotter")

> tab = table(gcCt)

> ord = sort(order(tab, decreasing = TRUE)[1:10])

> datsel = (as.character(gcCt) %in%

+ names(tab)[ord])

> gcCtsel = ordered(gcCt[datsel])

24 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

1 3 5 7 9 11 13 15 17 19 21 23

6
8

10
12

14

Number of G and C

lo
g 2

 in
te

ns
ity

Figure 1.3. Box plot of distributions of log2-intensities from the CLL datast
grouped by GC content.

> mycolsel = mycol[sort(ord)]

> multidensity(meanlogint[datsel] ~

+ gcCtsel, xlim = c(6, 11), col = mycolsel,

+ lwd = 2)

Exercise 14
Another useful distribution summary are plots of the empirical cumulative distri-
bution function. Create a plot similar to the one in Figure ?? using the function
multiecdf.

1. bioC introduction 25

6 7 8 9 10 11

0.
0

0.
5

1.
0

1.
5

2.
0

multidensity(meanlogint[datsel] ~ gcCtsel)

meanlogint[datsel] ~ gcCtsel

D
en

si
ty

Figure 1.4. Density plot of distributions of log2-intensities from the CLL datast
grouped by GC content.

Solutions:

> multiecdf(meanlogint[datsel] ~

+ gcCtsel, xlim = c(6, 11), xlab = exlab,

+ ylab = "ECDF", main = "", col = mycolsel,

+ lwd = 2)

6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2 intensity

E
C

D
F

Figure 1.5. Scatter plot of expression intensities
for two samples.

26 R. Gentleman, F. Hahne, S. Falcon, M. Morgan and P. Murrell

Testing crossreference: This should link to Lab R Bioconductor introduction.
Let’s see if it works.

The version number of R and the packages and their versions that were
used to generate this document are listed below

R version 2.5.0 RC (2007-04-22 r41275)
i386-apple-darwin8.9.1

locale:
C

attached base packages:
[1] "tools" "stats" "graphics"
[4] "grDevices" "utils" "datasets"
[7] "methods" "base"

other attached packages:
geneplotter lattice

"1.14.0" "0.15-5"
annotate hgu95av2cdf
"1.14.1" "1.16.0"

hgu95av2probe matchprobes
"1.16.2" "1.8.1"

CLL affy
"1.2.2" "1.14.0"
affyio BiocCaseStudies
"1.4.0" "1.0.5"

RColorBrewer GO
"0.2-3" "1.16.0"
class hgu95av2

"7.2-33" "1.16.0"
Biobase weaver
"1.14.0" "1.2.0"
codetools digest
"0.1-1" "0.3.0"

This is page 27
Printer: Opaque this

References

R. Gentleman, W. Huber, V. Carey, R. Irizarry, and S. Dudoit, ed-
itors. Bioinformatics and Computational Biology Solutions Using R
and Bioconductor. Springer, 2005.

P. Murrell. R Graphics. Chapman and Hall, 2005.

	R Bioconductor introduction
	Robert Gentleman, Florian Hahne, Seth Falcon, Martin Morgan and Paul Murrell
	Introduction
	Working with packages
	Some Basic R
	Structures for genomic data
	Building an ExpressionSet From Scratch
	Functions
	The apply functions
	Environments

	Something Harder
	Gene Ontology

	Finding help in R
	Graphics

	References

