
Exercises: Reading and Manipulating Short

Reads

Martin Morgan∗

29-30 July, 2010

Contents

1 Introduction 1

2 Aligned read input 2
2.1 Navigating Solexa output . 2
2.2 readAligned and the AlignedRead class 3
2.3 Subsets and filters . 7
2.4 Cautions . 9

3 Additional input functions 10

4 Quality assessment 12
4.1 Generating a QA report . 12
4.2 Exploring qa . 13
4.3 Frequent sequences . 14
4.4 Cycle-specific qualities and base calls 17

5 Coverage 20

6 Summary 20

7 Session information 21

1 Introduction

This practical uses the ShortRead package to input aligned and other short
read data files, and illustrates some of the available sequence manipulation and
quality assessment tools. Activities during the lab are posed as exercises. So,
as a first exercise:

∗Fred Hutchinson Cancer Research Center, Seattle, WA 98008

1

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

Exercise 1
Start an R session, and load the ShortRead package.

> library(ShortRead)

> packageDescription("ShortRead")$Version

[1] "1.6.2"

Confirm that the version of your package is at least as recent as the version in
this document. Seek assistance from one of the course assistants if you need
help getting the current version of ShortRead.

The course also requires access to sample data.

Exercise 2
Obtain and load the HTSandGeneCentricLabs package. Use

> install.packages("path/to/HTSandGeneCentricLabs.tar.gz", repos=NULL)

2 Aligned read input

This section illustrates input of aligned reads. It focuses on aligned reads pro-
duced by the Solexa Genome Analyzer ELAND software; reading data produced
by software such as MAQ or Bowtie, or in BAM format is described in the
ShortRead ‘Overview’ vignette and on the readAligned help page.

2.1 Navigating Solexa output

Vendor and third-party software is likely to process raw images, base call-
ing (Rolexa is a Bioconductor package providing alternative base calling), and
alignment to a reference genome (see BSgenome and the matchPDict function
of Biostrings). Bioconductor packages might enter a typical work flow after
alignment. The following starts with reads aligned with ELAND, an alignment
program from the Illumina Genome Analyzer II (GAII) platform.

We’ll start by creating a variable, extdataDir, containing the directory hold-
ing the sample GAII data, and check to make sure that we have defined the
right path.

> extdataDir <-

+ system.file("extdata", "slx", package="HTSandGeneCentricLabs")

> file.exists(extdataDir)

[1] TRUE

> stopifnot(file.exists(extdataDir))

2

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rolexa.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

A key functionality provided by ShortRead is input of a diversity of file types,
both of files from the Illumina pipeline and from other software and in formats
appropriate for other technologies. The interface to these input functions is
meant to facilitate reading one or more files into a single object. The interface
is like that for list.files: provide a directory path where relevant files are to
be found, plus a regular expression to select the files you are interested in.

Exercise 3
Use list.files to display all files in the extdataDir directory.

> list.files(extdataDir)

[1] "s_1_0001_int.txt.gz" "s_1_0001_nse.txt.gz"

[3] "s_1_1_export_head.txt" "s_1_1_sequence_head.txt"

We’ll select just one file to use in this analysis, based on files matching the reg-
ular expression .*_export_head.txt. These files are produced using ELAND
software run in eland-extended mode. This mode produces files, one for each
lane (and ‘end’ of paired end reads) that summarize diverse features of all reads,
and is a very convenient starting point for analysis; other inputs (e.g., MAQ,
Bowtie, BWA, or BAM files) are also supported.

Exercise 4
We’ll use an abbreviated file for most parts of this lab. The abbreviated file
contains the first 500,000 reads from a single lane of an Illumina paired-end
run. It is from lane 1, and we will use the first end only. The name of the file is
s_1_1_export_head.txt. We will use this as the ‘pattern’ to match, and check
that we have specified the pattern appropriately

> pattern <- "s_1_1_export_head.txt"

> list.files(extdataDir, pattern)

[1] "s_1_1_export_head.txt"

Our success shouldn’t be too surprising in this case, but it often pays to check.
For instance, the pattern above would also match a file with the same name but
with .tar.gz appended!

2.2 readAligned and the AlignedRead class

The readAligned function can be used to input aligned reads. The first argument
is a directory path where alignment files are to be found. The second argument
is the regular expression to select files to be read. An optional third argument
allows the user to specify which type of file is to be read in.

Exercise 5
Use readAligned to read in our abbreviated version of lane 1, specifying Solex-

aExport as the type of file.

3

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

> aln <- readAligned(extdataDir, pattern, "SolexaExport")

See the help page for readAligned for additional details about supported file
types.

What does readAligned input? It inputs the short read sequences and base
call qualities, and the chromosome, position, and strand information associated
with short read alignments. This information is expected to be provided by all
short read alignemnt software.

Exercise 6
Display the object we have read in.

> aln

class: AlignedRead

length: 500000 reads; width: 35 cycles

chromosome: 255:255:255 255:255:255 ... QC QC

position: NA NA ... NA NA

strand: NA NA ... NA NA

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

There are 500000 reads in the object, each read consisting of 35 nucleotides.
View the first several reads and query information about, e.g., the number of
reads that align to each strand, or the number of positions recorded as NA.

> head(sread(aln))

A DNAStringSet instance of length 6

width seq

[1] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[2] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[3] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[4] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[5] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[6] 35 GCAAGTTAAGAAGAGAGCAGAGAAGAACGTTTTTA

> table(strand(aln), useNA="ifany")

+ - * <NA>

119685 119313 0 261002

> sum(is.na(position(aln)))

[1] 261002

Notice how elements of the aln object are extracted using accessors such as
sread and strand; these are described on the help page for the class of the aln

object (indicated in the display of aln, above, as class AlignedRead); note that
the help page refers to the help page for accessors to enumerate additional ways
of accessing the data.

4

What are all the NA values returned by strand and position? These correspond
to reads that did not align to the reference genome used by ELAND; that
about 1/2 the reads do not align is below normal, making this an interesting
opportunity for quality assessment. The strand function returns a factor with
three levels. The first two describe reads aligned to the plus and minus strands,
the third (*) is available for successful alignments where strand information is
irrelevant.

Aligned reads contain several different kinds of information about ‘quality’.
Individual bases are assessed for quality during base calling. These ‘raw’ base
qualities are ‘calibrated’ during ELAND alignment; details of calibration are
to be found in Illumina documentation. The alignments themselves also have
qualities associated with them, with the details of alignment quality differing
between alignment algorithms.

Exercise 7
Retrieve calibrated base quality from aln.

> head(quality(aln))

class: SFastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[2] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[3] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[4] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[5] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[6] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

These qualities are string-encoded −10 log10 probabilities. The encoding in this
case follows a convention established by Illumina. The details of the encoding
can be obtained by querying quality(aln) for its alphabet; the letter A corre-
sponds to a −10log10 score of 1.

Numeric values are readily retrieved as a matrix, with rows corresponding
to reads and columns to cycles. Computations can then be performed on them,
e.g., to determine average calibrated quality scores as a function of cycle.

> alf <- alphabet(quality(aln))

> m <- as(quality(aln), "matrix")

> colMeans(m)

[1] 21.45995 19.91676 17.98661 19.67178 18.27315 18.61814

[7] 18.99522 18.81180 18.69941 18.47509 19.12563 17.39689

[13] 18.26270 18.85640 17.82326 17.43106 17.95288 17.01137

[19] 17.56018 17.73439 16.51199 16.99086 17.80355 16.38983

[25] 17.35305 17.15449 15.99980 16.38890 16.59765 16.18294

[31] 13.48905 13.03266 13.00785 12.75729 11.96461

5

Alignment quality

D
en

si
ty

0.00

0.01

0.02

0.03

0 20 40 60 80

Figure 1: Alignment quality

Alignment qualities are accessible with alignQuality. This returns an object
that can contain quality scores in different formats; to extract the actual quality
scores, use quality. Reads failing to align or to align in multiple locations have
an alignment quality of 0.

Exercise 8
Retrieve the alignment quality scores, determine how many align poorly, and
visualize the distribution (Figure 1) of scores.

> alignQuality(aln)

class: NumericQuality

quality: 0 0 ... 0 0 (500000 total)

> q <- quality(alignQuality(aln))

> sum(q==0)

[1] 295387

> print(densityplot(q[q>1], plot.points=FALSE,

+ xlab="Alignment quality"))

Alignment algorithms produce information in addition to basic data about
chromosome, position, and strand alignment. The exact content varies between

6

algorithms, and is available with alignData. alignData returns an Aligned-
DataFrame object that contains these data and a metadata description of them.
For instance, ELAND includes information about whether the read passed a
base-calling filter (based on strength and consistency of early bases in the read),
in addition to the lane, tile, x and y coordinate of each read.

Exercise 9
Use the alignData function to extract the additional information in the ELAND
alignment file. The underlying data in this object can be accessed as though it
were a data frame, for instance to tally the number of reads passing Illumina
base calling filter.

> alignData(aln)

An object of class "AlignedDataFrame"

readName: 1, 2, ..., 500000 (500000 total)

varLabels and varMetadata description:

run: Analysis pipeline run

lane: Flow cell lane

...: ...

contig: Contig

(7 total)

> table(alignData(aln)$filtering)

Y N

287222 212778

2.3 Subsets and filters

A very common operation is to reduce the number of reads used for subsequent
analysis. This can be done in a coordinated fashion by creating a subset of aln.

Exercise 10
Select just the aligned reads passing Illumina filtering, and aligning to the ref-
erence genome.

> filtIdx <- alignData(aln)$filtering=="Y"

> alignedIdx <- !is.na(strand(aln))

> aln[filtIdx & alignedIdx]

class: AlignedRead

length: 197432 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

7

A different approach to subsetting is to use objects of class SRFilter . These
can be particularly useful as an argument to readAligned, in addition to use in
interactive sessions.

Exercise 11
Construct instances of built-in filters to select reads passing the Illumina filtering
criterion, and uniquely aligning to a fully assembled chromosomes. These can
be ‘composed’ into a single overall filter, and applied to restrict available reads.

> filt1 <- alignDataFilter(expression(filtering=="Y"))

> filt2 <- chromosomeFilter("chr[0-9XYM]+.fa")

> filt <- compose(filt1, filt2)

> caln <- aln[filt(aln)]

> caln

class: AlignedRead

length: 195719 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

The filters developed above could be used to filter reads while being read in to
R, e.g,. with

> readAligned(extdataDir, pattern, type="SolexaExport", filter=filt)

The srFilter function can be used to create custom filters. The idea is that
filter functions accept a single argument x that is an object to be filtered, and
returns a logical vector that can be used to select elements of the object.

Exercise 12
As a first example, write and use a filter to select only a single read from all that
align to a particular chromosome and position (normally one would also like to
include strand as a uniqueness criterion; see the occurrenceFilter function for
a more complete implementation).

> ualignFilter <- srFilter(function(x) {

+ ## create a numerical index of reads. Divide the index, and

+ ## position information between chromosomes. Select the index of a

+ ## single read at each unique position. Return the selected index

+ ## as a logical vector with the same length as x

+ oindex <- seq_len(length(x))

+ index <- tapply(oindex, chromosome(x), c)

+ pdup <- tapply(position(x), chromosome(x), duplicated)

+ keep <- oindex %in% unlist(mapply(function(i, p) {

+ i[!p]

8

+ }, index, pdup))

+ }, name="select only one read per position")

> caln[ualignFilter(caln)]

class: AlignedRead

length: 188219 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

The filter functions built-in to ShortRead use a ‘factory’ pattern to create in-
stances of each filter that ‘remember’ how the filters were created. For instance,
chromosomeFilter("chr2.fa") creates an instance of the chromosome filter to
select only chromosomes matching chr2.fa.

Exercise 13
As an advanced example, the following filter subsamples a (user-specified) num-
ber of reads. The samplingFilter function uses the factory pattern, so filters
created with it remember how many reads to sample.

> samplingFilter <- function(sampleSize) {

+ srFilter(function(x) {

+ idx <- seq_len(length(x))

+ idx %in% sample(idx, sampleSize)

+ }, name="Demo sampling filter")

+ }

> sample100 <- samplingFilter(100)

> caln[sample100(caln)]

class: AlignedRead

length: 100 reads; width: 35 cycles

chromosome: chr12.fa chr19.fa ... chr1.fa chr10.fa

position: 31691994 35644922 ... 95090156 43527008

strand: + - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

2.4 Cautions

There are several confusing areas associated with reading data aligned with
various software packages. (1) Some alignment programs and genome resources
start numbering nucleotides of the subject sequence at 0, whereas others start
at 1. (2) Some alignment programs report matches on the minus strand in
terms of the ‘left-most’ position of the read (i.e., the location of the 3’ end of
the aligned read), whereas other report ‘five-prime’ matches (i.e., in terms of

9

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

the 5’ end of the read), regardless of whether the alignment is on the plus or
minus strand. (3) Some alignment programs reverse complement the sequence
of reads aligned to the minus strand. (4) Base qualities are sometimes encoded
as character strings, but the encoding differs between ‘fastq’ and ‘solexa fastq’.
It seems that all combinations of these choices are common ‘in the wild’.

The help page for readAligned attempts to be explicit about how reads are
formatted. Briefly:

• Subject sequence nucleotides are numbered starting at 1, rather than zero.
readAligned adjusts the coordinate system of input reads if necessary (e.g.,
when reading MAQ alignments).

• ELAND and Bowtie alignments on the minus strand are reported in ‘left-
most’ coordinates systems.

• ELAND and Bowtie alignments on the minus strand are not reverse com-
plemented.

• Character-encoded base quality scores are interpreted as the default for
the software package whose output is being parsed, e.g., as ‘Solexa fastq’
for ELAND. The object returned by quality applied to an AlignedRead
object is either FastqQuality or SFastqQuality .

Alignment programs sometimes offer the opportunity to customize output; such
customization needs to be accommodated when reads are input using Short-
Read.

3 Additional input functions

Many sequence alignment programs are producing ‘bam’ (Binary AlignMent)
files. These can be read in to R using readAligned with type="BAM". readAligned

filters reads to include only those reads alighed without indels; more flexible
representation is available with readGappedAlignments, which inputs the reads
and their ‘cigar’ representation. A cigar is a short run length encoding providing
information about how the sequence of nucleotides in the read align to the
reference, including information about indels. Even greater flexiblity is provided
by scanBam function in the Rsamtools package. This will parse BAM files that
are either local or remote (e.g., from the 1000 genomes project), and can be
used to efficiently select reads satisfying particular criteria, e.g., overlapping a
particular range or aligned to the minus strand. See the help page for scanBam

and ScanBamParam for additional information.
ShortRead, Biostrings, and the standard input functions from R provide

additional tools for reading Illumina and other alignment formats. The read-

XStringColumns function provides a convenient way to read DNA and quality se-
quences into compact data structures. readFasta and its counterpart readFastq

provide tools for reading FASTA- or FASTQ- (i.e., including quality annotation)
formatted files.

10

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

Exercise 14
Files _sequence.txt contain fastq-formatted sequence and quality scores. A
sample of this file type is available. Read these in to data structured defined in
ShortRead. The content of reads can be retrieved with the accessor functions
id, sread, and quality.

> reads <- readFastq(extdataDir, "s_1_1_sequence_head.txt$")

> head(id(reads))

A BStringSet instance of length 6

width seq

[1] 24 HWI-EAS88_3:1:1:33:484/1

[2] 24 HWI-EAS88_3:1:1:33:272/1

[3] 24 HWI-EAS88_3:1:1:31:594/1

[4] 24 HWI-EAS88_3:1:1:33:383/1

[5] 24 HWI-EAS88_3:1:1:35:216/1

[6] 25 HWI-EAS88_3:1:1:883:458/1

The readPrb functions reads ‘raw’ base call quality scores from _prb files in
the baseCallPath directory; the result is a BStringSet object that compactly
represents the quality scores in a way analogous to the results of quality applied
to aln.

Exercise 15
The _export.txt files read by readAligned are tab-delimited text files. The goal
of this exercise is to read the DNA sequence and quality score columns in to R
as DNAStringSet and BStringSet objects. The DNAStringSet and BStringSet
classes represent DNA or ‘biological’ strings; they extend the base class XString.

Start by parsing the first line of a _prb file to get a sense of its content. Spec-
ify the colClasses to be imported, using NULL to indicate that a column should
be skipped, and DNAString or BString to indicate columns that are to be read as
the corresponding data types (classes). Read the file with readXStringColumns.

> fl <- list.files(extdataDir, pattern, full=TRUE)

> cols <- strsplit(readLines(fl, 1), "\t")[[1]]

> length(cols)

[1] 22

> cols[9:10]

[1] "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

[2] "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU"

> colClasses <- rep(list(NULL), 22)

> colClasses[9:10] <- c("DNAString", "BString")

> strings <-

+ readXStringColumns(extdataDir, pattern, colClasses=colClasses)

> head(strings[[2]])

11

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

A BStringSet instance of length 6

width seq

[1] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[2] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[3] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[4] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[5] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[6] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

For each column in colClasses, readXStringColumns parses the corresponding
column in all files matching the function argument pattern into a single XStringSet,
i.e., concatenating the content of all files into a single object.

4 Quality assessment

This part of the course addresses ShortRead facilities for assessing quality, pri-
marily of Solexa data. The ShortRead functionality is mean to complement
rather than replace QA tools provided by the ELAND pipeline.

4.1 Generating a QA report

.
Creating a QA report is a two-step process. The first step is to visit necessary

files to collate information in a compact representation. The second step is to
present the information in a useful format.

The qa function collates information for the QA report. It visits each _ex-
port.txt file, and extracts information on reads and their qualities. Evalua-
tion of the function is straight-forward, e.g., qa <- qa(extdataDir, ".*_ex-
port.txt", type="SolexaExport"). The process of collating files can be time
consuming (each export file must be parsed, taking 3-4 minutes per file) and
memory intensive (lanes are processed independently of one another, but pro-
cessing a full lane consumes 2-3 GB of memory). The return value of the qa

function is actually quite compact, and easy to work with.

Exercise 16
Rather than collating information during the lab, we load the data from a
previously stored instance.

> data("qa_080828_081110", package="HTSandGeneCentricLabs")

> qa

class: SolexaExportQA(9)

QA elements (access with qa[["elt"]]):

readCounts: data.frame(8 3)

baseCalls: data.frame(8 5)

readQualityScore: data.frame(12288 4)

12

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

baseQuality: data.frame(752 3)

alignQuality: data.frame(629 3)

frequentSequences: data.frame(1200 4)

sequenceDistribution: data.frame(4540 4)

perCycle: list(2)

baseCall: data.frame(1400 4)

quality: data.frame(6664 5)

perTile: list(2)

readCounts: data.frame(7200 4)

medianReadQualityScore: data.frame(7200 4)

One feature of ShortRead that can speed up this stage of the operation is the
use of clustered computer resources and the Rmpi or mullticore package; qa

uses the srapply function to automatically detect and distribute collation tasks
across pre-established nodes. This is outlined in more detail in a subsequent
section.

The QA information collated from the _export.txt files is summarized into
an html report using the report function. The command to create the report
is rpt <- report(qa, dest=tempfile()). This creates an HTML file at the
location specified by the argument dest.

Exercise 17
Create a report from the qa object loaded in the previous exercise. Do this with
the command

> rpt <- report(qa, dest=tempfile())

View the report in your browser with

> browseURL(rpt)

The QA report provides summary statistics about the numbers of reads and
alignments, base calls and qualities, characteristics of per-lane and per-tile read
quality, and other information. The QA report is self-documenting, providing a
narrative description of each section.

4.2 Exploring qa

The qa object is a list-like structure with several entities.

Exercise 18
The readCounts element of qa is a simple data frame summarizing, on a per-lane
bases, the total number of reads, the number of reads passing Solexa internal
filtering, and the number of aligned reads.

> qa[["readCounts"]]

13

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://cran.fhcrc.org/web/packages/Rmpi/index.html
http://cran.fhcrc.org/web/packages/mullticore/index.html

read filtered aligned

s_1_1_export.txt 3668433 2278945 1910666

s_2_1_export.txt 4230424 3239956 2771169

s_3_1_export.txt 4003465 3089375 1720396

s_4_1_export.txt 4521919 3446177 2571235

s_6_1_export.txt 4004807 3127297 1985855

s_7_1_export.txt 3546869 2732974 1368590

s_8_1_export.txt 4232977 3291627 2379709

s_5_1_export.txt 2842633 2399387 2320140

Lanes 1-4 and 6-8 correspond to biologically interesting samples; lane 5 is the
Solexa ϕX-174 control lane. The number of reads (between 2.8 and 4.5 mil-
lion) is low for a typical experiment (official guidelines are provided in Solexa
documentation).

It can be difficult to scan large numbers, so the QA report template defines
functions that help to display the information in a more comprehensible fashion.
Source these files into your current R session, and read the second and third
columns as a proportion of the first.

> ShortRead:::.ppnCount(qa[["readCounts"]])

read filtered aligned

s_1_1_export.txt 3668433 0.621 0.521

s_2_1_export.txt 4230424 0.766 0.655

s_3_1_export.txt 4003465 0.772 0.430

s_4_1_export.txt 4521919 0.762 0.569

s_6_1_export.txt 4004807 0.781 0.496

s_7_1_export.txt 3546869 0.771 0.386

s_8_1_export.txt 4232977 0.778 0.562

s_5_1_export.txt 2842633 0.844 0.816

Refer to the QA report for further commentary on this and other aspects of the
report

4.3 Frequent sequences

A feature of raw reads, and of many subsequent stages of short read analysis, is a
power law-like relationship between the number of times a read occurs, and the
number of occurrences of a particular sequence in the sample. This information
is contained in the sequenceDistribution element of qa, and is the result of
running the tables command (defined in ShortRead) on a DNAStringSet object.

Exercise 19
Retrieve the sequenceDistribution element from qa; it is a simple data frame.
Look at the contents of the data frame using head, and select just lane 5 raw
reads. plot the power-law relationship between the number of reads and number

14

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

of times reads occur. As an alternative display of the same information, plot the
cumulative number of reads as a function of the number of times a read occurs.

> df <- qa[["sequenceDistribution"]]

> df5raw <- df[df$lane=="s_5_1_export.txt" & df$type=="read",]

> head(df5raw)

nOccurrences nReads type lane

3337 1 450124 read s_5_1_export.txt

3338 2 26810 read s_5_1_export.txt

3339 3 8366 read s_5_1_export.txt

3340 4 3806 read s_5_1_export.txt

3341 5 2166 read s_5_1_export.txt

3342 6 1417 read s_5_1_export.txt

> print(xyplot(log10(nReads)~log10(nOccurrences), df5raw,

+ xlab="Copies per read (log 10)",

+ ylab="Unique reads (log 10)"))

> csum <- with(df5raw, cumsum(nReads * nOccurrences))

> csum <- csum / csum[length(csum)]

> print(xyplot(csum ~log10(nOccurrences), df5raw,

+ xlab="Copies per read (log 10)",

+ ylab="Cumulative proportion of reads",

+ type="l"))

Results appear in Figure 2. The cumulative form of this figure appears in the
QA report.

The power-law relationship between copies per read and number of unique
reads in the control lane consists of three components. At the left of the graph
are > 105 reads that are each represented by only one copy. These likely corre-
spond to sequencing, base calling, or other errors associated with the technology.
At the right of the figure are a small number of reads represented many times.
These ‘frequent’ sequences are summarized in the frequentSequences element of
qa; frequent sequences are also reported by the tables function of ShortRead.

Exercise 20
Discover the frequent sequences amongst the raw and aligned reads of lane 5.

> df <- qa[["frequentSequences"]]

> head(df[df$lane=="s_5_1_export.txt" & df$type=="read",1:2])

sequence count

1051 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 70947

1052 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 13320

1053 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 11892

1054 CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8978

1055 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7670

1056 GATCTTTGGCGGCACGGAGCCGCGCATCACCTGTA 7561

15

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

Copies per read (log 10)

U
ni

qu
e

re
ad

s
(lo

g
10

)

0

1

2

3

4

5

0 1 2 3 4 5

●

●

●

●

●
●
●
●
●
●●
●●
●●
●●●●

●
●●
●●●
●●●●
●
●
●●
●
●
●●
●●

●
●
●
●
●
●
●●●
●●
●
●
●●
●

●
●
●●
●

●●●
●
●
●

●
●

●

●●●●
●
●●
●●

●
●

●
●
●
●

●

●
●
●●●
●
●
●
●●

●

●
●●
●
●
●●●●
●●
●
●
●
●●●●●
●●●●●●
●●●

●

●

●●●
●
●●●
●●●●●●●●●●
●
●●●
●
●●
●●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●
●●
●●●●●●●●●
●●●●●●●
●
●
●●
●●●●●●●●●●
●
●
●
●
●●
●●
●
●
●

●

●
●●●●●●●●●●
●●●●●
●●
●
●
●●
●

●

●●●●●
●●
●●
●●●
●●
●
●●●
●
●
●
●
●
●
●
●●●●●●●●●

●

●●
●

●
●

●

●

●

●
●
●
●●●●●
●

●

●

●

●

●

●
●
●
●

●

●

●●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●●
●
●
●

●

●

●●

●
●
●
●
●

●

●
●●
●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●

Copies per read (log 10)

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 r
ea

ds

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Figure 2: Number of copies of unique reads

Frequent sequences include poly-A reads, reads where only a few bases were
called, and reads with close similarity to the Solexa primer or adapter sequence
used in sample preparation.

Exercise 21
Many of the primer sequences are filtered out by Solexa criteria, but it is worth
discovering how many reads are ‘similar’ to this sequence. Use the srdistance

function to identify such reads, e.g., amongst those reads that contain no N

nucleotides.

> seq <- "CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGT"

> dist <- srdistance(clean(aln), seq)[[1]]

> head(table(dist))

dist

0 1 2 3 4 5

218 107 59 31 25 17

srdistance returns the edit distance between each read and the reference se-
quence, where the edit distance is defined so that each base mismatch repre-
sents an additional increment of 1. There are 384 reads that differ at 2 or fewer
locations, from amongst the 370049 reads in the cleaned sample used in this
exercise.

Reads represented many times may be problematic for downstream analysis. For
instance, sample preparation protocols may involve a PCR step that results in
differential amplification, whereas the analysis assumes reads are represented in
proportion to their occurrence. The ualignFilter function defined above, and

16

the srduplicated function in ShortRead represent two approaches to dealing
with this problem by ensuring that reads are represented exactly once (by some
definition of ‘once’ !).

Sequences in the middle portion of the graph in Figure 2 will often, depend-
ing on the nature of the investigation, represent the sequences of main biological
interest. These are sequences represented an intermediate number of times, as
might be required for reasonable coverage in a SNP discovery or ChIP-seq ex-
periment. The right-hand graph in Figure 2 shows a relatively abrupt transition
between reads represented rarely and those represented many times.

The sample QA report shows that the non-control lanes show much broader
transitions from rarely to frequently represented reads. This could represent
technical shortcomings of this run (e.g., inadequate enrichment of sample DNA)
or features of intrinsic biological interest (e.g., wide variability in ChIP abun-
dance between binding sites). Regardless of ultimate source, the broad distri-
bution of read occurrences implies some effort may be required to distinguish
‘noise’ (reads corresponding to those in the left and right portions of the control
lane graph) from signal.

Finally, while the control lane shows a relatively abrupt transition between
reads that occur rarely and those that are common (Figure 2), the distribution
is in fact 3- or 4-fold broader than expected under a naive model of random
read starts along the ϕX-174 genome. This is reinforced by alignments to the
reference genome, where clear patterns (e.g., unequal representation on plus and
minus strands; non-uniform coverage) are apparent.

Exercise 22
As an advanced exercise, simulate reads selected uniformly along both strands
of the 5200bp long ϕX-174 genome. Compare the times each read is represented
in your sample with those from the actual control lane. Hint: use sample with
replace=TRUE to generate the reads, and table(table(reads)) to summarize their
occurrence; this should take less than 5 lines of R code.

4.4 Cycle-specific qualities and base calls

As a final foray into the details of quality assessment, consider base calls and
quality, and how these change across cycles (see the second table and Section 4
of the QA report).

The table in the QA report suggests that the control lane (lane 5) is enriched
for A and T; this is confirmed by the figure in section 4. This likely reflects
underlying differences in the genomic regions represented in each lane.

Exercise 23
Use alphabetFrequency to summarize nucleotide use in the short reads in aln,
from the first part of this lab.

> alphabetFrequency(sread(aln), collapse=TRUE, baseOnly=TRUE,

+ as.prob=TRUE)

17

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

A C G T other

0.25588029 0.22092086 0.20225720 0.22800937 0.09293229

The frequency of ‘other’ (i.e., uncalled) nucleotides (> 9%) is very high; typical
runs are < 1%.

An unexpected aspect of the figure in Section 4 of the QA report is apparent
trends in nucleotide frequency with cycle. For instance, all lanes show a marked
decrease in A and increase in C across cycles. This is unexpected in this ex-
periment, where the a priori expectation is that sequences start at essentially
arbitrary locations in the sequenced DNA: an A is expected as frequently at the
beginning of the sequence as at the end.

Exercise 24
Use alphabetByCycle to extract the number of each nucleotide A, C, T, G,
sequenced at each cycle. Plot the transpose of the matrix using matplot, to see
how nucleotide counts change across cycles.

> abc <- alphabetByCycle(sread(aln))

> dim(abc)

[1] 17 35

> abc[1:4,1:5]

cycle

alphabet [,1] [,2] [,3] [,4] [,5]

A 145955 147044 128640 140609 135751

C 117538 106357 98356 109948 101961

G 118619 109879 100303 112267 102233

T 115666 118470 106223 112917 107716

> matplot(t(abc[1:4,]), type="l", xlab="Cycle", ylab="Count")

There are a number of possible contributors to cycle-dependent nucleotide fre-
quencies, including inadequate reagent volume, and nucleotide-specific differ-
ential accumulation of fluorescent dyes. Figure 3 and the figure in Section 4
of the report contain additional features that are moderately unexpected, and
unexplained. For instance, the frequency of a nucleotide such as A changes very
systematically across cycles, first increasing and then decreasing; this seems
more regular than expected. Patterns of nucleotide change also seem to echo
one another at similar cycles but in different lanes, even when the lanes have
different biological material. This occurs for instance in lanes 1-4 of the QA
report, where the last 5 cycles of the C nucleotide seem to change in (compara-
tive!) unison.

18

0 5 10 15 20 25 30 35

10
00

00
12

00
00

14
00

00

Cycle

C
ou

nt

Figure 3: Nucleotide frequency per cycle, lane 1

19

5 Coverage

Many work flows invovle some aspect of coverage, the depth to which individual
nucleotides in a reference sequence are covered by nucleotides in reads.

Exercise 25
Select just those reads that aligned to the reference genome (e.g., using !is.na(position(aln))).
Use the coverage function to summarize how reads are aligned to chromosomes

> cvg <- coverage(aln[!is.na(position(aln))])

The coverage function returns a list-like structure, where each element of
the list represents a chromosome. The data are represented as a ‘run length
encoded’ (Rle) instance. Rle instances are readily interogatted for a variety of
useful insights.

Exercise 26
Select an element of cvg for further investigation. Use (slice) to identify all
regions where there are at least 2 reads. Use the width accessor and density-

plot function to display the distribution of island widths. Use viewMaxs and
desnityplot to display the distribution of maximum island depths.

> slc <- slice(cvg[["chr1.fa"]], 2)

> densityplot(log10(width(slc)))

> densityplot(viewMaxs(slc))

There are many additional exploratory opportunities associated with cover-
age vectors; we will encounter some of these in ChIP-seq processing. As a final
exercise. . .

Exercise 27
The rtracklayer package can export Rle and other objects to a format such as gff
suitable for viewing in genome browsers. Use rtracklayer and its export function
to export a description of the peaks.

> library(rtracklayer)

> fl <- tempfile()

> export(cvg[["chr1.fa"]], fl, "gff3")

6 Summary

This portion of the course has provided you with an overview of the input,
manipulation, and quality assessment functionality available in the ShortRead
and other packages. A summary of the insights learned might be reflected in
simple, and somewhat naive, work flows.

The first work flow simply performs quality assessment on ELAND aligned
data.

20

http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

> rpt <- report(qa(extdataDir, "_export.txt"),

+ dest="reports/my_report.pdf")

Performing QA on ELAND data does not commit us to using ELAND align-
ments in subsequent steps.

The second work flow reads aligned data in to R. The work flow might start
with aligned reads created by one of many aligners; we start with ELAND _-
export.txt files. There are many possible issues highlighted in the forgoing
discussion. We choose to establish a series of filters to eliminate some reads at
the very start of our work flow. We eliminate reads with ambiguous base calls
and failing Solexa’s internal filtering criteria. Reads aligning to multiple loca-
tions in the genome are not straight-forward to deal with, and are not essential
for ChIP-seq style experiments (this is not necessarily the case for expression or
RNA-seq experiments), so we remove these. Most close matches to the Solexa
primer sequence are flagged as not passing Solexa base call filters, but we elim-
inate reads near to this as well. Finally, we restrict our attention to those reads
that align to assembled nuclear chromosomes, putting aside for the moment
those reads aligning to organelle genomes (the X and Y chromosomes also re-
quire special consideration, and we might often eliminate these from a first-pass
work flow, too). Our second work flow is thus:

> filt1 <- nFilter()

> filt2 <- alignDataFilter(expression(filtering=="Y"))

> filt3 <- alignQualityFilter(threshold=1)

> filt4 <- srdistanceFilter("CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGT", 4)

> filt5 <- chromosomeFilter("chr[0-9]+.fa")

> filt <- compose(filt1, filt2, filt3, filt4, filt5)

> aln <- readAligned(extdataDir, pattern, filter=filt)

This work flow applies equally to MAQ aligned data, with the exception that
Solexa filtering criteria are not available and the chromosome naming convention
in the MAQ-aligned reads in our sample are different:

> maqDir <- "path/to/maq"

> filt5 <- chromosomeFilter("chr[0-9XY]+$")

> filt <- compose(filt1, filt3, filt4, filt5)

> maq <- readAligned(maqDir, "s_8.map", "MAQMap", filter=filt)

Each of the filters represents a decision. The decision may be inappropriate for
particular analyses, and may be revisited as understanding of the data matures.

The GappedAlignments class and the GenomicRanges and Rsamtools pack-
ages provide comparable facilities for input and manipulation of reads aligned
with indels.

7 Session information

• R version 2.11.1 (2010-05-31), x86_64-unknown-linux-gnu

21

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

• Locale: LC_CTYPE=C, LC_NUMERIC=C, LC_TIME=C, LC_COLLATE=C,
LC_MONETARY=C, LC_MESSAGES=en_US, LC_PAPER=en_US, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US,
LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, tools,
utils

• Other packages: AnnotationDbi 1.10.2, Biobase 2.8.0, Biostrings 2.16.9,
DBI 0.2-5, GO.db 2.4.1, GenomicFeatures 1.0.6, GenomicRanges 1.0.7,
IRanges 1.6.11, KEGG.db 2.4.1, RCurl 1.4-3, RSQLite 0.9-2,
Rsamtools 1.0.7, ShortRead 1.6.2, bitops 1.0-4.1, hgu95av2.db 2.4.1,
lattice 0.18-8, org.Hs.eg.db 2.4.1, rtracklayer 1.8.1

• Loaded via a namespace (and not attached): BSgenome 1.16.5,
XML 3.1-0, biomaRt 2.4.0, grid 2.11.1, hwriter 1.2

22

	Introduction
	Aligned read input
	Navigating Solexa output
	readAligned and the AlignedRead class
	Subsets and filters
	Cautions

	Additional input functions
	Quality assessment
	Generating a QA report
	Exploring qa
	Frequent sequences
	Cycle-specific qualities and base calls

	Coverage
	Summary
	Session information

