
Exercises: A Simple ChIP-Seq Workflow

Martin Morgan and Patrick Aboyoun

Fred Hutchinson Cancer Research Center, Seattle, WA 98008

29-30 July, 2010

1 Introduction

These exercises focus on a ChIP-seq work flow described in a vignette in the
GenomicRanges package.

> library("GenomicRanges")

We use a subset of the ChIP-seq data for origin recognition complex (ORC)
binding sites in Saccharomyces cerevisiae from the paper Conserved nucleosome
positioning defines replication origins, Eaton et al. (PMID 20351051). The sub-
set consists of all the MAQ alignments to chromosome XIV for two replicates of
ORC ChIP-seq data. The subset is contained in the EatonEtAlChIPseq pack-
age, and we will use a helper function available in the HTSandGeneCentricLabs
package

> library("EatonEtAlChIPseq")

> library("HTSandGeneCentricLabs")

2 Input and Quality Assessment

We start with looking at the alignments, which were created using MAQ (Li et al.
2008) with a maximum mismatch of 3 bases and a minimum Phred quality score
of 35. The data contained in the EatonEtAlChIPseq package were obtained and
extracted from GEO files GSM424494 wt G2 orc chip rep1.mapview.txt.gz and
GSM424494 wt G2 orc chip rep2.mapview.txt.gz.

> extdataDir <- system.file("extdata", package="EatonEtAlChIPseq")

> fls <- list.files(extdataDir, ".*gz$", full=TRUE)

> basename(fls)

[1] "GSM424494_wt_G2_orc_chip_rep1_S288C_14.mapview.txt.gz"
[2] "GSM424494_wt_G2_orc_chip_rep2_S288C_14.mapview.txt.gz"

1

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://genesdev.cshlp.org/content/24/8/748.abstract
ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/samples/GSM424nnn/GSM424494/


2.1 Input

These files can be read in using readAligned from the ShortRead package, with
type="MAQMapview". Here we read in the first replicate.

> orcAlignsRep1 <- readAligned(fls[[1]], type = "MAQMapview")

> orcAlignsRep1

class: AlignedRead
length: 478774 reads; width: 39 cycles
chromosome: S288C_14 S288C_14 ... S288C_14 S288C_14
position: 2 4 ... 784295 784295
strand: + - ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

A necessary step is to ensure that the chromosome naming of orcAlignsRep1

is consistent with the conventions used in steps down-stream; here we want to
change S288C_14 to chrXIV. Using the tools for that from the ShortRead package,
we do this as follows.

> chromosome <- chromosome(orcAlignsRep1)

> levels(chromosome) <- "chrXIV"

> orcAlignsRep1 <- renew(orcAlignsRep1, chromosome=chromosome)

Similar actions can be used to read in and recode the second replicate.
A second correction is also required, reflecting an idiosyncrasy in data han-

dling. ShortRead expects all DNA sequence and quality scores to read 5’ to 3’
from left to right. On the other hand, in orcAlignsRep1, reads on the minus
strand are represented by their reverse complement, as they would appear when
aligned to the reference sequence. The utility function renewEatonEtAl, from the
HTSandGeneCentricLabs package will do the necessary adjustment for us. It
reads on the minus strand to conform to ShortRead expectations. Here is its
code:

> renewEatonEtAl

function (aln)
{

chr <- chromosome(aln)
levels(chr) <- "chrXIV"
idx <- strand(aln) == "-"
qual <- quality(quality(aln))
qual[idx] <- reverse(qual[idx])
seq <- sread(aln)
seq[idx] <- reverseComplement(seq[idx])
renew(aln, sread = seq, quality = FastqQuality(qual), chromosome = chr)

}
<environment: namespace:HTSandGeneCentricLabs>

This step is not normally required.

2

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html


2.2 Quality Assessment

As an exercise, run the qa and report functions from the ShortRead package on
the two replicates. A wrinkle is that the reads of the Eaton et al. dataset are
represented in an older file format (MAQMapview) that is not supported by qa;
so, here we perform the quality assessment on the aligned reads only, giving the
qa a list of AlignedRead objects.

> data(orcAlignsRep2)

> qa <- qa(list(rep1=renewEatonEtAl(orcAlignsRep1),

+ rep2=renewEatonEtAl(orcAlignsRep2)))

> rpt <- report(qa)

> browseURL(rpt)

Some caution in interpretation of results is required, as the reads have al-
ready been processed to some extent (e.g., low quality reads removed). Nonethe-
less, there are several unusual features of the reads. Discuss these with your
neighbors.

3 Pre-Processing: Filtering Peaks

For illustration purposes we will focus on the first replicate.

> orcAlignsRep1

class: AlignedRead
length: 478774 reads; width: 39 cycles
chromosome: chrXIV chrXIV ... chrXIV chrXIV
position: 2 4 ... 784295 784295
strand: + - ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

In this subsection we will demonstrate how to perform three filtering op-
erations on alignments produced by the MAQ software through the following
restrictions:

• Number of mismatches in alignment must be ≤ 3 (guideline specified in
paper)

• No duplicates of {chromosome, strand, position} combinations (PCR bias
correction)

• An alignment on one strand must have a plausible alignment on the com-
plementary strand (“symmetry” restriction)

3

http://bioconductor.org/packages/release/bioc/html/ShortRead.html


The first two restrictions can be implemented using functionality from the Short-
Read package, while the last one can be performed using operations within the
GenomicRanges package. Filters similar to these are implemented in many peak
calling algorithms.

In the previous section we loaded the orcAlignsRep1 object, an instance
of the ShortRead class AlignedRead . This object contains information on the
characteristics of the read as well as its alignment to a reference genome, in-
cluding information on the number of mismatches for the best alignment. Using
functionality from the ShortRead package we can perform the first two filtering
operations, which result in a subset that is roughly 18% of the size of the original
MAQ alignment file.

> subsetRep1 <-

+ orcAlignsRep1[alignData(orcAlignsRep1)[["nMismatchBestHit"]] <= 3]

> length(subsetRep1) / length(orcAlignsRep1)

[1] 0.96655

> subsetRep1 <- subsetRep1[occurrenceFilter(withSread=FALSE)(subsetRep1)]

> length(subsetRep1) / length(orcAlignsRep1)

[1] 0.180722

> subsetRep1

class: AlignedRead
length: 86525 reads; width: 39 cycles
chromosome: chrXIV chrXIV ... chrXIV chrXIV
position: 2 5 ... 784294 784295
strand: + + ... - +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

The last filtering criterion, a “symmetry” filter, requires an understanding of
the interval spans for the alignments rather than just the “leftmost” alignment
location, i. e. start location on the positive strand or end location on the neg-
ative strand, represented in the AlignedRead class. As such we will coerce the
alignment subset contained in subsetRep1 to a GRanges object using a coerce
method from the ShortRead package.

> rangesRep1 <- as(subsetRep1, "GRanges")

> head(rangesRep1, 3)

GRanges with 3 ranges and 4 elementMetadata values
seqnames ranges strand | nMismatchBestHit

<Rle> <IRanges> <Rle> | <integer>
[1] chrXIV [2, 40] + | 0
[2] chrXIV [5, 43] + | 0

4

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html


[3] chrXIV [6, 44] + | 1
mismatchQuality nExactMatch24 nOneMismatch24

<integer> <integer> <integer>
[1] 0 5 0
[2] 0 5 0
[3] 4 6 0

seqlengths
chrXIV

NA

AlignedRead objects lack information on chromosome length, so we will add
it to the new rangesRep1 object.

> seqlengths(rangesRep1) <- 784333

For our “pseudo” paired-read filter, we will use the authors’ estimate of the
mean fragment length (around 150 base pairs). In particular, we will construct
a filter where each alignment on the plus strand must have a corresponding
alignment somewhere within [100, 200] bp downstream on the minus strand and
vice versa with those alignments on the minus strand.

This filtering process can be achieved through an interval overlap operation
between the starts of the alignments on the minus strand and the projected end
of the alignments on the plus strand, where the former can be derived by the
code

> negRangesRep1 <- rangesRep1[strand(rangesRep1) == "-"]

> negStartsRep1 <- resize(negRangesRep1, 1)

and the latter by the code

> posRangesRep1 <- rangesRep1[strand(rangesRep1) == "+"]

> posEndsRep1 <- shift(posRangesRep1, 99)

> posEndsRep1 <- resize(posEndsRep1, 100)

> strand(posEndsRep1) <- "-"

The results of the interval overlap are shown below. This filter flagged
roughly 4.5% of the remaining alignments for removal, resulting in keeping
17.3% of the original set of alignments when including the results of the first
two filtering steps.

> strandMatching <- findOverlaps(negStartsRep1, posEndsRep1)

> posKeep <- unique(subjectHits(strandMatching))

> negKeep <- unique(queryHits(strandMatching))

> length(posKeep) / length(posEndsRep1)

[1] 0.9559064

5



> length(negKeep) / length(negStartsRep1)

[1] 0.9554474

> (length(posKeep) + length(negKeep)) / length(orcAlignsRep1)

[1] 0.1727120

> posFilteredRangesRep1 <- posRangesRep1[posKeep]

> negFilteredRangesRep1 <- negRangesRep1[negKeep]

4 Finding peaks

Once the alignments have been filtered, they can be aggregated into coverage
vectors. Many peak calling algorithms use a point estimate for the average
fragment size of each read. We suppose that the size of the reads are uniformly
distributed over [100, 200] base pairs, although more elaborate distributions are
readily modeled. We implement our model by weighting the coverage vector
of the original reads with a function that gives full weight to positions 100 bp
upstream, and then linearly decreasing weights for the next 100 bp. For the
runwtsum function from IRanges, these weights for the positive and negative
strands are expressed by the vectors:

> posWeights <- c(seq(0.01, 1, length = 100), rep(c(1, 0), c(101, 200)))

> negWeights <- rev(posWeights)

> plot(-200:200, posWeights, xlab = "Relative Position",

+ ylab = "Coverage Weight", type = "l")

> lines(-200:200, negWeights, lty=2, col="blue")

The first step in constructing this coverage vector is to tabulate the align-
ments by their start positions on both the positive and negative strand. This
is done with the resize function, whose second argument is the width (in this
case, 1) of the resulting fragment. We will use the coverage function on these
start values, which will produce RleList representations of the coverage vectors.

> posStartsCoverRep1 <- coverage(resize(posFilteredRangesRep1, 1))

> negStartsCoverRep1 <- coverage(resize(negFilteredRangesRep1, 1))

The second step in the process is aggregating upstream alignments using the
posWeights and negWeights objects defined above.

> posExtCoverRep1 <-

+ round(runwtsum(posStartsCoverRep1, k = 401, wt = posWeights,

+ endrule = "constant"))

> negExtCoverRep1 <-

+ round(runwtsum(negStartsCoverRep1, k = 401, wt = negWeights,

+ endrule = "constant"))

6

http://bioconductor.org/packages/release/bioc/html/IRanges.html


−200 −100 0 100 200

0.
0

0.
4

0.
8

Relative Position

C
ov

er
ag

e 
W

ei
gh

t

Figure 1: Coverage weights for positive strand weighted sums.

Before we proceeded any further, we will define two plot functions for vi-
sualizing coverage vectors: plotCoverage for displaying a single coverage vector
and plotStrandedCoverage for displaying back-to-back coverage vectors for dual-
stranded data.

> plotCoverage <-

+ function(x, xlab = "Position", ylab = "Coverage",...)

+ {

+ plot(c(start(x), length(x)), c(runValue(x), tail(runValue(x), 1)),

+ type = "s", col = "blue", xlab = xlab, ylab = ylab, ...)

+ }

> plotStrandedCoverage <-

+ function(positive, negative, xlab = "Position", ylab = "Coverage",...)

+ {

+ ylim <- min(max(positive), max(negative)) * c(-1, 1)

+ plotCoverage(positive, ylim = ylim, ...)

+ lines(c(start(negative), length(negative)),

+ - c(runValue(negative), tail(runValue(negative), 1)),

+ type = "s", col = "red")

+ abline(h = 0, col = "dimgray")

+ }

The coverage across chromosome XIV of the filtered alignments is shown in
Figure 2. In general this plot shows a near mirror image of coverage vectors
between the positive and negative strand.

> plotStrandedCoverage(posExtCoverRep1[[1]], negExtCoverRep1[[1]])

7



0e+00 2e+05 4e+05 6e+05 8e+05

−
10

0
−

50
0

50
10

0

Position

C
ov

er
ag

e

Figure 2: Plot of coverage across chromosome XIV.

To reduce these measures to a single dimension, we will be conservative and
choose the smallest value between the positive and negative strand coverage
vectors using the pmin method for RleList objects.

The experimental design of Eaton et al. does not include a ‘control’ lane;
such lanes are commonly included in transcription factor and other ChIP-seq
experiments. Many software packages implement more elaborate approaches
to modeling peaks, for example the PeakSeq, MACS, SBP, BayesPeak, and
SWEMBL packages; this software is primarily useful for transcription factor
style, but not nucleosome, analysis. A review of alternatives is available.

> combExtCoverRep1 <- pmin(posExtCoverRep1, negExtCoverRep1)

> quantile(combExtCoverRep1, c(0.5, 0.9, 0.95))

chrXIV
50% 4
90% 10
95% 14

8

http://bioconductor.org/packages/release/bioc/html/BayesPeak.html


We now can call peaks off the combined coverage object combExtCoverRep1.
Since the median height for the combined coverage on chromosome XIV is 4,
we can limit our attention to areas on the chromosome with coverage ≥ 5 using
the slice function. From there we can derive a heuristic for a meaningful peaks
as those achieving a maximum height ≥ 28, which selects 22 peaks.

> peaksRep1 <- slice(combExtCoverRep1, lower = 5)

> peakMaxsRep1 <- viewMaxs(peaksRep1)

> tail(sort(peakMaxsRep1[[1]]), 30)

[1] 22 22 22 23 23 23 24 25 28 29 29 32 41 51
[15] 51 58 61 64 66 69 73 73 74 75 83 89 90 114
[29] 116 137

> peaksRep1 <- peaksRep1[peakMaxsRep1 >= 28]

> peakRangesRep1 <-

+ GRanges("chrXIV", as(peaksRep1[[1]], "IRanges"),

+ seqlengths = seqlengths(rangesRep1))

> length(peakRangesRep1)

[1] 22

We can now compare the significant peaks we selected with those selected by
the authors. Using interval comparison tools, we see there is general agreement
between our peaks and those of the authors.

> data(orcPeaksRep1)

> countOverlaps(orcPeaksRep1, peakRangesRep1)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> countOverlaps(peakRangesRep1, orcPeaksRep1)

[1] 0 2 0 1 1 1 1 1 1 1 1 1 2 1 1 0 0 1 1 1 1 1

Eaton et al. continue their analysis in a number of interesting directions
(e.g., motif characterization, nucleosome positioning), and it is left as an open
exercise to explore R / Bioconductor solutions to these problems.

5 Analysis of designed experiments

The approach outlined above does not make use of the second experimental
replicate of Eaton et al., and in general analysis of designed experiments is still
relatively unexplored – studies to date often include technical replicates, but
use this data by pooling across replicates (lanes) prior to peak calling. Packages
such as DESeq may be appropriate for analysis of designed experiments once
peaks have been identified. This approach is likely to be appropriate when the
assay targets clearly separated or previously identified binding sites; it would
not be appropriate when the assay targets broad or poorly defined peaks. This
represents an interesting area for further development.

9

http://bioconductor.org/packages/release/bioc/html/DESeq.html

	Introduction
	Input and Quality Assessment
	Input
	Quality Assessment

	Pre-Processing: Filtering Peaks
	Finding peaks
	Analysis of designed experiments

