# Lawlor human pancreas (SMARTer) ## Introduction This performs an analysis of the @lawlor2017singlecell dataset, consisting of human pancreas cells from various donors. ## Data loading ``` r library(scRNAseq) sce.lawlor <- LawlorPancreasData() ``` ``` r library(AnnotationHub) edb <- AnnotationHub()[["AH73881"]] anno <- select(edb, keys=rownames(sce.lawlor), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.lawlor) <- anno[match(rownames(sce.lawlor), anno[,1]),-1] ``` ## Quality control ``` r unfiltered <- sce.lawlor ``` ``` r library(scater) stats <- perCellQCMetrics(sce.lawlor, subsets=list(Mito=which(rowData(sce.lawlor)$SEQNAME=="MT"))) qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent", batch=sce.lawlor$`islet unos id`) sce.lawlor <- sce.lawlor[,!qc$discard] ``` ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, x="islet unos id", y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count") + theme(axis.text.x = element_text(angle = 90)), plotColData(unfiltered, x="islet unos id", y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features") + theme(axis.text.x = element_text(angle = 90)), plotColData(unfiltered, x="islet unos id", y="subsets_Mito_percent", colour_by="discard") + ggtitle("Mito percent") + theme(axis.text.x = element_text(angle = 90)), ncol=2 ) ```
Distribution of each QC metric across cells from each donor of the Lawlor pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-lawlor-qc-dist)Distribution of each QC metric across cells from each donor of the Lawlor pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

``` r plotColData(unfiltered, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() ```
Percentage of mitochondrial reads in each cell in the 416B dataset compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-lawlor-qc-comp)Percentage of mitochondrial reads in each cell in the 416B dataset compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 9 5 25 ## discard ## 34 ``` ## Normalization ``` r library(scran) set.seed(1000) clusters <- quickCluster(sce.lawlor) sce.lawlor <- computeSumFactors(sce.lawlor, clusters=clusters) sce.lawlor <- logNormCounts(sce.lawlor) ``` ``` r summary(sizeFactors(sce.lawlor)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.295 0.781 0.963 1.000 1.182 2.629 ``` ``` r plot(librarySizeFactors(sce.lawlor), sizeFactors(sce.lawlor), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Lawlor pancreas dataset.

(\#fig:unref-lawlor-norm)Relationship between the library size factors and the deconvolution size factors in the Lawlor pancreas dataset.

## Variance modelling Using age as a proxy for the donor. ``` r dec.lawlor <- modelGeneVar(sce.lawlor, block=sce.lawlor$`islet unos id`) chosen.genes <- getTopHVGs(dec.lawlor, n=2000) ``` ``` r par(mfrow=c(4,2)) blocked.stats <- dec.lawlor$per.block for (i in colnames(blocked.stats)) { current <- blocked.stats[[i]] plot(current$mean, current$total, main=i, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(current) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in the Lawlor pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted separately for each donor.

(\#fig:unnamed-chunk-4)Per-gene variance as a function of the mean for the log-expression values in the Lawlor pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted separately for each donor.

## Dimensionality reduction ``` r library(BiocSingular) set.seed(101011001) sce.lawlor <- runPCA(sce.lawlor, subset_row=chosen.genes, ncomponents=25) sce.lawlor <- runTSNE(sce.lawlor, dimred="PCA") ``` ## Clustering ``` r snn.gr <- buildSNNGraph(sce.lawlor, use.dimred="PCA") colLabels(sce.lawlor) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r table(colLabels(sce.lawlor), sce.lawlor$`cell type`) ``` ``` ## ## Acinar Alpha Beta Delta Ductal Gamma/PP None/Other Stellate ## 1 1 0 1 13 2 16 2 0 ## 2 0 0 75 1 0 0 0 0 ## 3 0 161 1 0 0 1 2 0 ## 4 0 1 0 1 0 0 5 19 ## 5 22 0 0 0 0 0 0 0 ## 6 0 0 174 4 1 0 1 0 ## 7 0 76 1 0 0 0 0 0 ## 8 0 0 0 1 20 0 2 0 ``` ``` r table(colLabels(sce.lawlor), sce.lawlor$`islet unos id`) ``` ``` ## ## ACCG268 ACCR015A ACEK420A ACEL337 ACHY057 ACIB065 ACIW009 ACJV399 ## 1 8 2 2 4 4 4 9 2 ## 2 13 3 2 33 3 2 4 16 ## 3 36 23 14 13 14 14 21 30 ## 4 7 1 0 1 0 4 9 4 ## 5 0 2 13 0 0 0 5 2 ## 6 34 10 4 39 7 23 24 39 ## 7 33 12 0 5 6 7 4 10 ## 8 1 1 2 1 2 1 12 3 ``` ``` r gridExtra::grid.arrange( plotTSNE(sce.lawlor, colour_by="label"), plotTSNE(sce.lawlor, colour_by="islet unos id"), ncol=2 ) ```
Obligatory $t$-SNE plots of the Lawlor pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

(\#fig:unref-grun-tsne)Obligatory $t$-SNE plots of the Lawlor pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

## Session Info {-}
``` R version 4.5.0 RC (2025-04-04 r88126) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] BiocSingular_1.24.0 scran_1.36.0 [3] scater_1.36.0 ggplot2_3.5.2 [5] scuttle_1.18.0 ensembldb_2.32.0 [7] AnnotationFilter_1.32.0 GenomicFeatures_1.60.0 [9] AnnotationDbi_1.70.0 AnnotationHub_3.16.0 [11] BiocFileCache_2.16.0 dbplyr_2.5.0 [13] scRNAseq_2.21.1 SingleCellExperiment_1.30.0 [15] SummarizedExperiment_1.38.0 Biobase_2.68.0 [17] GenomicRanges_1.60.0 GenomeInfoDb_1.44.0 [19] IRanges_2.42.0 S4Vectors_0.46.0 [21] BiocGenerics_0.54.0 generics_0.1.3 [23] MatrixGenerics_1.20.0 matrixStats_1.5.0 [25] BiocStyle_2.36.0 rebook_1.18.0 loaded via a namespace (and not attached): [1] jsonlite_2.0.0 CodeDepends_0.6.6 magrittr_2.0.3 [4] ggbeeswarm_0.7.2 gypsum_1.4.0 farver_2.1.2 [7] rmarkdown_2.29 BiocIO_1.18.0 vctrs_0.6.5 [10] memoise_2.0.1 Rsamtools_2.24.0 RCurl_1.98-1.17 [13] htmltools_0.5.8.1 S4Arrays_1.8.0 curl_6.2.2 [16] BiocNeighbors_2.2.0 Rhdf5lib_1.30.0 SparseArray_1.8.0 [19] rhdf5_2.52.0 sass_0.4.10 alabaster.base_1.8.0 [22] bslib_0.9.0 alabaster.sce_1.8.0 httr2_1.1.2 [25] cachem_1.1.0 GenomicAlignments_1.44.0 igraph_2.1.4 [28] mime_0.13 lifecycle_1.0.4 pkgconfig_2.0.3 [31] rsvd_1.0.5 Matrix_1.7-3 R6_2.6.1 [34] fastmap_1.2.0 GenomeInfoDbData_1.2.14 digest_0.6.37 [37] colorspace_2.1-1 dqrng_0.4.1 irlba_2.3.5.1 [40] ExperimentHub_2.16.0 RSQLite_2.3.9 beachmat_2.24.0 [43] labeling_0.4.3 filelock_1.0.3 httr_1.4.7 [46] abind_1.4-8 compiler_4.5.0 bit64_4.6.0-1 [49] withr_3.0.2 BiocParallel_1.42.0 viridis_0.6.5 [52] DBI_1.2.3 HDF5Array_1.36.0 alabaster.ranges_1.8.0 [55] alabaster.schemas_1.8.0 rappdirs_0.3.3 DelayedArray_0.34.0 [58] bluster_1.18.0 rjson_0.2.23 tools_4.5.0 [61] vipor_0.4.7 beeswarm_0.4.0 glue_1.8.0 [64] h5mread_1.0.0 restfulr_0.0.15 rhdf5filters_1.20.0 [67] grid_4.5.0 Rtsne_0.17 cluster_2.1.8.1 [70] gtable_0.3.6 metapod_1.16.0 ScaledMatrix_1.16.0 [73] XVector_0.48.0 ggrepel_0.9.6 BiocVersion_3.21.1 [76] pillar_1.10.2 limma_3.64.0 dplyr_1.1.4 [79] lattice_0.22-7 rtracklayer_1.68.0 bit_4.6.0 [82] tidyselect_1.2.1 locfit_1.5-9.12 Biostrings_2.76.0 [85] knitr_1.50 gridExtra_2.3 bookdown_0.43 [88] ProtGenerics_1.40.0 edgeR_4.6.0 xfun_0.52 [91] statmod_1.5.0 UCSC.utils_1.4.0 lazyeval_0.2.2 [94] yaml_2.3.10 evaluate_1.0.3 codetools_0.2-20 [97] tibble_3.2.1 alabaster.matrix_1.8.0 BiocManager_1.30.25 [100] graph_1.86.0 cli_3.6.4 munsell_0.5.1 [103] jquerylib_0.1.4 Rcpp_1.0.14 dir.expiry_1.16.0 [106] png_0.1-8 XML_3.99-0.18 parallel_4.5.0 [109] blob_1.2.4 bitops_1.0-9 viridisLite_0.4.2 [112] alabaster.se_1.8.0 scales_1.3.0 purrr_1.0.4 [115] crayon_1.5.3 rlang_1.1.6 cowplot_1.1.3 [118] KEGGREST_1.48.0 ```