# Muraro human pancreas (CEL-seq) ## Introduction This performs an analysis of the @muraro2016singlecell CEL-seq dataset, consisting of human pancreas cells from various donors. ## Data loading ``` r library(scRNAseq) sce.muraro <- MuraroPancreasData() ``` Converting back to Ensembl identifiers. ``` r library(AnnotationHub) edb <- AnnotationHub()[["AH73881"]] gene.symb <- sub("__chr.*$", "", rownames(sce.muraro)) gene.ids <- mapIds(edb, keys=gene.symb, keytype="SYMBOL", column="GENEID") # Removing duplicated genes or genes without Ensembl IDs. keep <- !is.na(gene.ids) & !duplicated(gene.ids) sce.muraro <- sce.muraro[keep,] rownames(sce.muraro) <- gene.ids[keep] ``` ## Quality control ``` r unfiltered <- sce.muraro ``` This dataset lacks mitochondrial genes so we will do without. For the one batch that seems to have a high proportion of low-quality cells, we compute an appropriate filter threshold using a shared median and MAD from the other batches (Figure \@ref(fig:unref-muraro-qc-dist)). ``` r library(scater) stats <- perCellQCMetrics(sce.muraro) qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent", batch=sce.muraro$donor, subset=sce.muraro$donor!="D28") sce.muraro <- sce.muraro[,!qc$discard] ``` ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, x="donor", y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, x="donor", y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, x="donor", y="altexps_ERCC_percent", colour_by="discard") + ggtitle("ERCC percent"), ncol=2 ) ```
Distribution of each QC metric across cells from each donor in the Muraro pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-muraro-qc-dist)Distribution of each QC metric across cells from each donor in the Muraro pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

We have a look at the causes of removal: ``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_altexps_ERCC_percent ## 663 700 738 ## discard ## 773 ``` ## Normalization ``` r library(scran) set.seed(1000) clusters <- quickCluster(sce.muraro) sce.muraro <- computeSumFactors(sce.muraro, clusters=clusters) sce.muraro <- logNormCounts(sce.muraro) ``` ``` r summary(sizeFactors(sce.muraro)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0878 0.5411 0.8208 1.0000 1.2108 13.9869 ``` ``` r plot(librarySizeFactors(sce.muraro), sizeFactors(sce.muraro), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Muraro pancreas dataset.

(\#fig:unref-muraro-norm)Relationship between the library size factors and the deconvolution size factors in the Muraro pancreas dataset.

## Variance modelling We block on a combined plate and donor factor. ``` r block <- paste0(sce.muraro$plate, "_", sce.muraro$donor) dec.muraro <- modelGeneVarWithSpikes(sce.muraro, "ERCC", block=block) top.muraro <- getTopHVGs(dec.muraro, prop=0.1) ``` ``` r par(mfrow=c(8,4)) blocked.stats <- dec.muraro$per.block for (i in colnames(blocked.stats)) { current <- blocked.stats[[i]] plot(current$mean, current$total, main=i, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(current) points(curfit$mean, curfit$var, col="red", pch=16) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in the Muraro pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

(\#fig:unref-muraro-variance)Per-gene variance as a function of the mean for the log-expression values in the Muraro pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

## Data integration ``` r library(batchelor) set.seed(1001010) merged.muraro <- fastMNN(sce.muraro, subset.row=top.muraro, batch=sce.muraro$donor) ``` We use the proportion of variance lost as a diagnostic measure: ``` r metadata(merged.muraro)$merge.info$lost.var ``` ``` ## D28 D29 D30 D31 ## [1,] 0.060847 0.024121 0.000000 0.00000 ## [2,] 0.002646 0.003018 0.062421 0.00000 ## [3,] 0.003449 0.002641 0.002598 0.08162 ``` ## Dimensionality reduction ``` r set.seed(100111) merged.muraro <- runTSNE(merged.muraro, dimred="corrected") ``` ## Clustering ``` r snn.gr <- buildSNNGraph(merged.muraro, use.dimred="corrected") colLabels(merged.muraro) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r tab <- table(Cluster=colLabels(merged.muraro), CellType=sce.muraro$label) library(pheatmap) pheatmap(log10(tab+10), color=viridis::viridis(100)) ```
Heatmap of the frequency of cells from each cell type label in each cluster.

(\#fig:unref-seger-heat)Heatmap of the frequency of cells from each cell type label in each cluster.

``` r table(Cluster=colLabels(merged.muraro), Donor=merged.muraro$batch) ``` ``` ## Donor ## Cluster D28 D29 D30 D31 ## 1 104 6 57 112 ## 2 59 21 77 97 ## 3 12 75 64 43 ## 4 28 149 126 120 ## 5 87 261 277 214 ## 6 21 7 54 26 ## 7 1 6 6 37 ## 8 6 6 5 2 ## 9 11 68 5 30 ## 10 4 2 5 8 ``` ``` r gridExtra::grid.arrange( plotTSNE(merged.muraro, colour_by="label"), plotTSNE(merged.muraro, colour_by="batch"), ncol=2 ) ```
Obligatory $t$-SNE plots of the Muraro pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

(\#fig:unref-muraro-tsne)Obligatory $t$-SNE plots of the Muraro pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

## Session Info {-}
``` R version 4.5.0 RC (2025-04-04 r88126) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] pheatmap_1.0.12 batchelor_1.24.0 [3] scran_1.36.0 scater_1.36.0 [5] ggplot2_3.5.2 scuttle_1.18.0 [7] ensembldb_2.32.0 AnnotationFilter_1.32.0 [9] GenomicFeatures_1.60.0 AnnotationDbi_1.70.0 [11] AnnotationHub_3.16.0 BiocFileCache_2.16.0 [13] dbplyr_2.5.0 scRNAseq_2.21.1 [15] SingleCellExperiment_1.30.0 SummarizedExperiment_1.38.0 [17] Biobase_2.68.0 GenomicRanges_1.60.0 [19] GenomeInfoDb_1.44.0 IRanges_2.42.0 [21] S4Vectors_0.46.0 BiocGenerics_0.54.0 [23] generics_0.1.3 MatrixGenerics_1.20.0 [25] matrixStats_1.5.0 BiocStyle_2.36.0 [27] rebook_1.18.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_2.0.0 [3] CodeDepends_0.6.6 magrittr_2.0.3 [5] ggbeeswarm_0.7.2 gypsum_1.4.0 [7] farver_2.1.2 rmarkdown_2.29 [9] BiocIO_1.18.0 vctrs_0.6.5 [11] DelayedMatrixStats_1.30.0 memoise_2.0.1 [13] Rsamtools_2.24.0 RCurl_1.98-1.17 [15] htmltools_0.5.8.1 S4Arrays_1.8.0 [17] curl_6.2.2 BiocNeighbors_2.2.0 [19] Rhdf5lib_1.30.0 SparseArray_1.8.0 [21] rhdf5_2.52.0 sass_0.4.10 [23] alabaster.base_1.8.0 bslib_0.9.0 [25] alabaster.sce_1.8.0 httr2_1.1.2 [27] cachem_1.1.0 ResidualMatrix_1.18.0 [29] GenomicAlignments_1.44.0 igraph_2.1.4 [31] mime_0.13 lifecycle_1.0.4 [33] pkgconfig_2.0.3 rsvd_1.0.5 [35] Matrix_1.7-3 R6_2.6.1 [37] fastmap_1.2.0 GenomeInfoDbData_1.2.14 [39] digest_0.6.37 colorspace_2.1-1 [41] dqrng_0.4.1 irlba_2.3.5.1 [43] ExperimentHub_2.16.0 RSQLite_2.3.9 [45] beachmat_2.24.0 labeling_0.4.3 [47] filelock_1.0.3 httr_1.4.7 [49] abind_1.4-8 compiler_4.5.0 [51] bit64_4.6.0-1 withr_3.0.2 [53] BiocParallel_1.42.0 viridis_0.6.5 [55] DBI_1.2.3 HDF5Array_1.36.0 [57] alabaster.ranges_1.8.0 alabaster.schemas_1.8.0 [59] rappdirs_0.3.3 DelayedArray_0.34.0 [61] bluster_1.18.0 rjson_0.2.23 [63] tools_4.5.0 vipor_0.4.7 [65] beeswarm_0.4.0 glue_1.8.0 [67] h5mread_1.0.0 restfulr_0.0.15 [69] rhdf5filters_1.20.0 grid_4.5.0 [71] Rtsne_0.17 cluster_2.1.8.1 [73] gtable_0.3.6 metapod_1.16.0 [75] BiocSingular_1.24.0 ScaledMatrix_1.16.0 [77] XVector_0.48.0 ggrepel_0.9.6 [79] BiocVersion_3.21.1 pillar_1.10.2 [81] limma_3.64.0 dplyr_1.1.4 [83] lattice_0.22-7 rtracklayer_1.68.0 [85] bit_4.6.0 tidyselect_1.2.1 [87] locfit_1.5-9.12 Biostrings_2.76.0 [89] knitr_1.50 gridExtra_2.3 [91] bookdown_0.43 ProtGenerics_1.40.0 [93] edgeR_4.6.0 xfun_0.52 [95] statmod_1.5.0 UCSC.utils_1.4.0 [97] lazyeval_0.2.2 yaml_2.3.10 [99] evaluate_1.0.3 codetools_0.2-20 [101] tibble_3.2.1 alabaster.matrix_1.8.0 [103] BiocManager_1.30.25 graph_1.86.0 [105] cli_3.6.4 munsell_0.5.1 [107] jquerylib_0.1.4 Rcpp_1.0.14 [109] dir.expiry_1.16.0 png_0.1-8 [111] XML_3.99-0.18 parallel_4.5.0 [113] blob_1.2.4 sparseMatrixStats_1.20.0 [115] bitops_1.0-9 viridisLite_0.4.2 [117] alabaster.se_1.8.0 scales_1.3.0 [119] purrr_1.0.4 crayon_1.5.3 [121] rlang_1.1.6 cowplot_1.1.3 [123] KEGGREST_1.48.0 ```