# (PART) Case studies {-} # Human PBMCs (10X Genomics) ## Introduction This performs an analysis of the public PBMC ID dataset generated by 10X Genomics [@zheng2017massively], starting from the filtered count matrix. ## Data loading ``` r library(TENxPBMCData) all.sce <- list( pbmc3k=TENxPBMCData('pbmc3k'), pbmc4k=TENxPBMCData('pbmc4k'), pbmc8k=TENxPBMCData('pbmc8k') ) ``` ## Quality control ``` r unfiltered <- all.sce ``` Cell calling implicitly serves as a QC step to remove libraries with low total counts and number of detected genes. Thus, we will only filter on the mitochondrial proportion. ``` r library(scater) stats <- high.mito <- list() for (n in names(all.sce)) { current <- all.sce[[n]] is.mito <- grep("MT", rowData(current)$Symbol_TENx) stats[[n]] <- perCellQCMetrics(current, subsets=list(Mito=is.mito)) high.mito[[n]] <- isOutlier(stats[[n]]$subsets_Mito_percent, type="higher") all.sce[[n]] <- current[,!high.mito[[n]]] } ``` ``` r qcplots <- list() for (n in names(all.sce)) { current <- unfiltered[[n]] colData(current) <- cbind(colData(current), stats[[n]]) current$discard <- high.mito[[n]] qcplots[[n]] <- plotColData(current, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() } do.call(gridExtra::grid.arrange, c(qcplots, ncol=3)) ```
Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-pbmc-filtered-var)Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r lapply(high.mito, summary) ``` ``` ## $pbmc3k ## Mode FALSE TRUE ## logical 2609 91 ## ## $pbmc4k ## Mode FALSE TRUE ## logical 4182 158 ## ## $pbmc8k ## Mode FALSE TRUE ## logical 8157 224 ``` ## Normalization We perform library size normalization, simply for convenience when dealing with file-backed matrices. ``` r all.sce <- lapply(all.sce, logNormCounts) ``` ``` r lapply(all.sce, function(x) summary(sizeFactors(x))) ``` ``` ## $pbmc3k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.234 0.748 0.926 1.000 1.157 6.604 ## ## $pbmc4k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.315 0.711 0.890 1.000 1.127 11.027 ## ## $pbmc8k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.296 0.704 0.877 1.000 1.118 6.794 ``` ## Variance modelling ``` r library(scran) all.dec <- lapply(all.sce, modelGeneVar) all.hvgs <- lapply(all.dec, getTopHVGs, prop=0.1) ``` ``` r par(mfrow=c(1,3)) for (n in names(all.dec)) { curdec <- all.dec[[n]] plot(curdec$mean, curdec$total, pch=16, cex=0.5, main=n, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(curdec) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-filtered-pbmc-variance)Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Dimensionality reduction For various reasons, we will first analyze each PBMC dataset separately rather than merging them together. We use randomized SVD, which is more efficient for file-backed matrices. ``` r library(BiocSingular) set.seed(10000) all.sce <- mapply(FUN=runPCA, x=all.sce, subset_row=all.hvgs, MoreArgs=list(ncomponents=25, BSPARAM=RandomParam()), SIMPLIFY=FALSE) set.seed(100000) all.sce <- lapply(all.sce, runTSNE, dimred="PCA") set.seed(1000000) all.sce <- lapply(all.sce, runUMAP, dimred="PCA") ``` ## Clustering ``` r for (n in names(all.sce)) { g <- buildSNNGraph(all.sce[[n]], k=10, use.dimred='PCA') clust <- igraph::cluster_walktrap(g)$membership colLabels(all.sce[[n]]) <- factor(clust) } ``` ``` r lapply(all.sce, function(x) table(colLabels(x))) ``` ``` ## $pbmc3k ## ## 1 2 3 4 5 6 7 8 9 10 ## 475 636 153 476 164 31 159 164 340 11 ## ## $pbmc4k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 ## 127 594 518 775 211 394 187 993 55 201 91 36 ## ## $pbmc8k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ## 292 1603 388 94 738 1035 1049 156 203 153 2098 261 64 14 9 ``` ``` r all.tsne <- list() for (n in names(all.sce)) { all.tsne[[n]] <- plotTSNE(all.sce[[n]], colour_by="label") + ggtitle(n) } do.call(gridExtra::grid.arrange, c(all.tsne, list(ncol=2))) ```
Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

(\#fig:unref-filtered-pbmc-tsne)Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

## Data integration With the per-dataset analyses out of the way, we will now repeat the analysis after merging together the three batches. ``` r # Intersecting the common genes. universe <- Reduce(intersect, lapply(all.sce, rownames)) all.sce2 <- lapply(all.sce, "[", i=universe,) all.dec2 <- lapply(all.dec, "[", i=universe,) # Renormalizing to adjust for differences in depth. library(batchelor) normed.sce <- do.call(multiBatchNorm, all.sce2) # Identifying a set of HVGs using stats from all batches. combined.dec <- do.call(combineVar, all.dec2) combined.hvg <- getTopHVGs(combined.dec, n=5000) set.seed(1000101) merged.pbmc <- do.call(fastMNN, c(normed.sce, list(subset.row=combined.hvg, BSPARAM=RandomParam()))) ``` We use the percentage of lost variance as a diagnostic measure. ``` r metadata(merged.pbmc)$merge.info$lost.var ``` ``` ## pbmc3k pbmc4k pbmc8k ## [1,] 7.044e-03 3.129e-03 0.000000 ## [2,] 6.876e-05 4.912e-05 0.003008 ``` We proceed to clustering: ``` r g <- buildSNNGraph(merged.pbmc, use.dimred="corrected") colLabels(merged.pbmc) <- factor(igraph::cluster_louvain(g)$membership) table(colLabels(merged.pbmc), merged.pbmc$batch) ``` ``` ## ## pbmc3k pbmc4k pbmc8k ## 1 535 426 830 ## 2 331 588 1126 ## 3 182 122 217 ## 4 150 179 292 ## 5 170 345 573 ## 6 292 538 1020 ## 7 342 630 1236 ## 8 437 749 1538 ## 9 9 18 95 ## 10 97 365 782 ## 11 34 120 201 ## 12 11 54 159 ## 13 11 3 9 ## 14 4 36 64 ## 15 4 9 15 ``` And visualization: ``` r set.seed(10101010) merged.pbmc <- runTSNE(merged.pbmc, dimred="corrected") gridExtra::grid.arrange( plotTSNE(merged.pbmc, colour_by="label", text_by="label", text_colour="red"), plotTSNE(merged.pbmc, colour_by="batch") ) ```
Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

(\#fig:unref-filtered-pbmc-merged-tsne)Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

## Session Info {-}
``` R Under development (unstable) (2024-10-21 r87258) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.1 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] batchelor_1.23.0 BiocSingular_1.23.0 [3] scran_1.35.0 scater_1.35.0 [5] ggplot2_3.5.1 scuttle_1.17.0 [7] TENxPBMCData_1.25.0 HDF5Array_1.35.7 [9] rhdf5_2.51.2 DelayedArray_0.33.4 [11] SparseArray_1.7.4 S4Arrays_1.7.1 [13] abind_1.4-8 Matrix_1.7-1 [15] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0 [17] Biobase_2.67.0 GenomicRanges_1.59.1 [19] GenomeInfoDb_1.43.2 IRanges_2.41.2 [21] S4Vectors_0.45.2 BiocGenerics_0.53.3 [23] generics_0.1.3 MatrixGenerics_1.19.1 [25] matrixStats_1.5.0 BiocStyle_2.35.0 [27] rebook_1.17.0 loaded via a namespace (and not attached): [1] DBI_1.2.3 gridExtra_2.3 [3] CodeDepends_0.6.6 rlang_1.1.5 [5] magrittr_2.0.3 RcppAnnoy_0.0.22 [7] compiler_4.5.0 RSQLite_2.3.9 [9] DelayedMatrixStats_1.29.1 dir.expiry_1.15.0 [11] png_0.1-8 vctrs_0.6.5 [13] pkgconfig_2.0.3 crayon_1.5.3 [15] fastmap_1.2.0 dbplyr_2.5.0 [17] XVector_0.47.2 labeling_0.4.3 [19] rmarkdown_2.29 graph_1.85.1 [21] UCSC.utils_1.3.1 ggbeeswarm_0.7.2 [23] purrr_1.0.2 bit_4.5.0.1 [25] bluster_1.17.0 xfun_0.50 [27] cachem_1.1.0 beachmat_2.23.6 [29] jsonlite_1.8.9 blob_1.2.4 [31] rhdf5filters_1.19.0 Rhdf5lib_1.29.0 [33] BiocParallel_1.41.0 cluster_2.1.8 [35] irlba_2.3.5.1 parallel_4.5.0 [37] R6_2.5.1 bslib_0.8.0 [39] limma_3.63.3 jquerylib_0.1.4 [41] Rcpp_1.0.14 bookdown_0.42 [43] knitr_1.49 FNN_1.1.4.1 [45] igraph_2.1.3 tidyselect_1.2.1 [47] viridis_0.6.5 yaml_2.3.10 [49] codetools_0.2-20 curl_6.1.0 [51] lattice_0.22-6 tibble_3.2.1 [53] withr_3.0.2 KEGGREST_1.47.0 [55] Rtsne_0.17 evaluate_1.0.3 [57] BiocFileCache_2.15.1 ExperimentHub_2.15.0 [59] Biostrings_2.75.3 pillar_1.10.1 [61] BiocManager_1.30.25 filelock_1.0.3 [63] BiocVersion_3.21.1 sparseMatrixStats_1.19.0 [65] munsell_0.5.1 scales_1.3.0 [67] glue_1.8.0 metapod_1.15.0 [69] tools_4.5.0 AnnotationHub_3.15.0 [71] BiocNeighbors_2.1.2 ScaledMatrix_1.15.0 [73] locfit_1.5-9.10 XML_3.99-0.18 [75] cowplot_1.1.3 grid_4.5.0 [77] edgeR_4.5.1 AnnotationDbi_1.69.0 [79] colorspace_2.1-1 GenomeInfoDbData_1.2.13 [81] beeswarm_0.4.0 vipor_0.4.7 [83] cli_3.6.3 rsvd_1.0.5 [85] rappdirs_0.3.3 viridisLite_0.4.2 [87] dplyr_1.1.4 ResidualMatrix_1.17.0 [89] uwot_0.2.2 gtable_0.3.6 [91] sass_0.4.9 digest_0.6.37 [93] dqrng_0.4.1 ggrepel_0.9.6 [95] farver_2.1.2 memoise_2.0.1 [97] htmltools_0.5.8.1 lifecycle_1.0.4 [99] httr_1.4.7 statmod_1.5.0 [101] mime_0.12 bit64_4.6.0-1 ```