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1 Introduction

The GSBenchMark contains eleven expression datasets representative of different diseases. The
package also contains a list of pathways and their associated gene targets. Together with these
datasets and the pathways provide a benchmark for machine learning and pathway analyses, most
of them used previously in [1].
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2 Datasets

Benchmark datasets and pathway targets were downloaded from supplemental files and sources
cited in [1]. These datasets covers different diseases: Leukaemia [2], Marfan [3], Melanoma [4],
Prostate [5], Sarcoma [6], Head and neck cancer [7], response to breast cancer treatmetn [8],
Bipolar disorder [9]. We also added datasets for two new diseases: Parkinson’s disease [10], and
Melanoma cancer[4]. We did not include two of the datasets mentioned in [1]: First, the famous
Leaukemia data set in [11] which is available through package golubEsets. Secondly, the data
presented in paper [12] because the data were not available to us. These data were converted from
Matlab to R for this package.
First, we load the library:

> require(GSBenchMark)

2.1 Pathway Data

GSBenchMark contains a list of the pathways.

> data(diracpathways)
> class(diracpathways)

[1] "list"

> names(diracpathways)[1:5]

[1] "DEATHPATHWAY" "TCAPOPTOSISPATHWAY" "CCR3PATHWAY"
[4] "NEUTROPHILPATHWAY" "ALTERNATIVEPATHWAY"

> class(diracpathways[[1]])

[1] "character"

> diracpathways[[1]]

"BID" "TRAF2" "TNFRSF25" "NFKBIA" "NFKB1" "TNFSF12" "CASP6"

"CASP3" "CASP9" "CASP7" "BCL2" "CASP8" "CHUK" "CFLAR"

"DFFA" "DFFB" "RELA" "CYCS" "LMNA" "GAS2" "FADD"

"BIRC4" "BIRC3" "BIRC2" "TRADD" "TNFRSF10A" "CASP10" "TNFSF10"

"TNFRSF10B" "RIPK1" "APAF1" "MAP3K14" "SPTAN1"

> pathways = diracpathways;

The variable diracpathways contains the pathways genes. It is a list. Each element represents
a pathway with its name. Each elements contains a list of characters which represent the genes in
the pathway.
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2.2 Gene Expression Datasets

Now, we load the datasets names:

> data(GSBenchMarkDatasets)
> print(GSBenchMark.Dataset.names)

[1] "leukemia_GSEA" "marfan_GDS2960" "melanoma_GDS2735"
[4] "parkinsons_GDS2519" "prostate_GDS2545_m_nf" "prostate_GDS2545_m_p"
[7] "prostate_GDS2545_p_nf" "sarcoma_data" "squamous_GDS2520"

[10] "breast_GDS807" "bipolar_GDS2190"

Here is a summary of the datasets:

> for(i in 1: length(GSBenchMark.Dataset.names))
{

DataSetStudy = GSBenchMark.Dataset.names[[i]]
data(list=DataSetStudy)
cat("Data Set",DataSetStudy,"\n")
print(phenotypesLevels)
print(table(phenotypes))

}

Data Set leukemia_GSEA
0 1

"AML" "ALL"
phenotypes
0 1

24 24
Data Set marfan_GDS2960

0 1
"non-MFS" "MFS"
phenotypes
0 1

41 60
Data Set melanoma_GDS2735

0 1
"Normal" "metastasis"

phenotypes
0 1

23 23
Data Set parkinsons_GDS2519

0 1
"Normal" "Parkinson's"

phenotypes
0 1

22 50
Data Set prostate_GDS2545_m_nf

0 1
"normal" "metastasis"

phenotypes
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0 1
18 25
Data Set prostate_GDS2545_m_p

0 1
"primary" "metastasis"

phenotypes
0 1

65 25
Data Set prostate_GDS2545_p_nf

0 1
"normal" "primary"

phenotypes
0 1

18 65
Data Set sarcoma_data

0 1
"LMS" "GIST"

phenotypes
0 1

31 37
Data Set squamous_GDS2520

0 1
"Normal" "HNSCC"
phenotypes
0 1

22 22
Data Set breast_GDS807

0 1
"Responsive" "Non-responsive"

phenotypes
0 1

32 28
Data Set bipolar_GDS2190

0 1
"Normal" "Bipolar"

phenotypes
0 1

31 30

The data consist of three variables: exprsdata, phenotypes, and phenotypesLevels.
exprsdata consists of gene expressions. phenotypes contains the sample labels: "0" in-
dicates less dangarous and "1" more dangerous phenotype. phenotypesLevels makes the
connection between "0" and "1" with the real label names e.g. "Normal" and "Parkinson’s".
GSBenchMark requires the rownames of gene expression varaible represent the gene names,
i.e. they are represented in the pathway information variable.

2.3 Matching pathway targets to gene expression datasets

One can extract the gene names by:
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> genenames = rownames(exprsdata);
> genenames[1:10]

[1] "DDR1" "RFC2" "HSPA6" "PAX8" "GUCA1A" "UBA7" "THRA" "PTPN21" "CCL5"
[10] "CYP2E1"

Also, it is possible that some of the genes in a pathway are not represented in the expression data.
We prune them as the following:

> prunedpathways = lapply(pathways, function(x) intersect(x, genenames))
> emptypathways = which(sapply(prunedpathways, length) < 2)
> if (length(emptypathways) > 0) {

warning(paste("After pruning the pathways, there exist pathways with zero or one gene!\n Small pathways were deleted. Deleted pathways:",
paste(names(emptypathways), collapse = ","), "\n"))

diracpathwayPruned= prunedpathways[-emptypathways]
}else {

diracpathwayPruned = prunedpathways
}

> cat("Number of pathways before pruning ",length(pathways),"\n")

Number of pathways before pruning 249

> cat("Number of pathways after pruning ",length(diracpathwayPruned))

Number of pathways after pruning 249

phenotypes is a factor with with levels ("0","1") where "1" indicates more dangerous pheno-
type. For real labels, one can look at phenotypesLevels

> summary(phenotypes)

0 1
31 30

> phenotypesLevels

0 1
"Normal" "Bipolar"
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3 System Information

Session information:

> toLatex(sessionInfo())

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so

• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: GSBenchMark 1.26.0

• Loaded via a namespace (and not attached): compiler 4.4.1, tools 4.4.1
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