### R code from vignette source 'DesignSignatures.Rnw' ################################################### ### code chunk number 1: DesignSignatures.Rnw:46-48 ################################################### options(continue=" ") options(width=80) ################################################### ### code chunk number 2: startup ################################################### library(DECIPHER) ################################################### ### code chunk number 3: expr1 ################################################### # specify the path to your sequence file: fas <- "<>" # OR find the example sequence file used in this tutorial: fas <- system.file("extdata", "IDH2.fas", package="DECIPHER") ################################################### ### code chunk number 4: expr2 (eval = FALSE) ################################################### ## # specify a path for where to write the sequence database ## dbConn <- "<>" ## # OR create the sequence database in memory ## dbConn <- dbConnect(dbDriver("SQLite"), ":memory:") ## N <- Seqs2DB(fas, "FASTA", dbConn, "") ## N # number of sequences in the database ################################################### ### code chunk number 5: expr3 (eval = FALSE) ################################################### ## # if each sequence belongs to its own group, ## # then identify the sequences with a number: ## desc <- as.character(seq_len(N)) # N is the number of sequences ## # OR get the FASTA record description: ## desc <- dbGetQuery(dbConn, "select description from Seqs")$description ## # show the unique descriptors: ## unique(desc) ################################################### ### code chunk number 6: expr4 (eval = FALSE) ################################################### ## Add2DB(data.frame(identifier=desc, stringsAsFactors=FALSE), dbConn) ################################################### ### code chunk number 7: expr5a (eval = FALSE) ################################################### ## # Designing primers for sequencing experiments: ## TYPE <- "sequence" ## MIN_SIZE <- 300 # base pairs ## MAX_SIZE <- 700 ## RESOLUTION <- 5 # k-mer signature ## LEVELS <- 5 # max number of each k-mer ################################################### ### code chunk number 8: expr5b (eval = FALSE) ################################################### ## # Designing primers for community fingerprinting (FLP): ## TYPE <- "length" ## # it is important to have a width range of lengths ## MIN_SIZE <- 200 # base pairs ## MAX_SIZE <- 1400 ## # define bin boundaries for distinguishing length, ## # the values below require high-resolution, but ## # the bin boundaries can be redefined for lower ## # resolution experiments such as gel runs ## RESOLUTION <- c(seq(200, 700, 3), ## seq(705, 1000, 5), ## seq(1010, 1400, 10)) ## LEVELS <- 2 # presence/absence of the length ################################################### ### code chunk number 9: expr5c (eval = FALSE) ################################################### ## # Designing primers for high resolution melting (HRM): ## TYPE <- "melt" ## MIN_SIZE <- 55 # base pairs ## MAX_SIZE <- 400 ## # the recommended values for resolution ## RESOLUTION <- seq(75, 100, 0.25) # degrees Celsius ## LEVELS <- 10 ################################################### ### code chunk number 10: expr6 (eval = FALSE) ################################################### ## ENZYMES <- NULL # required for sequencing ## # OR select restriction enzymes to consider ## data(RESTRICTION_ENZYMES) # load available enzymes ## # for this tutorial we will use the enzyme MslI ## ENZYMES <- RESTRICTION_ENZYMES["MslI"] ## ENZYMES ################################################### ### code chunk number 11: expr7 (eval = FALSE) ################################################### ## primers <- DesignSignatures(dbConn, ## type=TYPE, ## minProductSize=MIN_SIZE, ## maxProductSize=MAX_SIZE, ## resolution=RESOLUTION, ## levels=LEVELS, ## enzymes=ENZYMES) ################################################### ### code chunk number 12: expr8 (eval = FALSE) ################################################### ## primers[which.max(primers$score),] # best primers without digestion ################################################### ### code chunk number 13: expr9 (eval = FALSE) ################################################### ## primers[which.max(primers$digest_score),] # best primers with digestion ################################################### ### code chunk number 14: expr9 (eval = FALSE) ################################################### ## PSET <- 1 # examine the top scoring primer set overall ## ## # select the first sequence from each group ## dna <- SearchDB(dbConn, ## remove="all", ## nameBy="identifier", ## clause="row_names = ## (select min(row_names) from Seqs as S ## where S.identifier = Seqs.identifier)", ## verbose=FALSE) ## ## f_primer <- DNAStringSet(primers$forward_primer[PSET]) ## r_primer <- DNAStringSet(primers$reverse_primer[PSET]) ## patterns <- c(f_primer, ## reverseComplement(r_primer), ## DNAStringSet(gsub("[^A-Z]", "", ENZYMES))) ## ## BrowseSeqs(dna, ## patterns=patterns) ################################################### ### code chunk number 15: expr10 (eval = FALSE) ################################################### ## PSET <- which.max(primers$score) # top scoring without digestion ## ## f_primer <- DNAString(primers$forward_primer[PSET]) ## r_primer <- DNAString(primers$reverse_primer[PSET]) ## r_primer <- reverseComplement(r_primer) ## ## ids <- dbGetQuery(dbConn, "select distinct identifier from Seqs") ## ids <- ids$identifier ## ## if (TYPE=="sequence") { ## signatures <- matrix(0, nrow=4^RESOLUTION, ncol=length(ids)) ## } else if (TYPE=="melt") { ## signatures <- matrix(0, nrow=length(RESOLUTION), ncol=length(ids)) ## } else { # TYPE=="length" ## signatures <- matrix(0, nrow=length(RESOLUTION) - 1, ncol=length(ids)) ## } ## colnames(signatures) <- abbreviate(ids, 15) ## ## for (i in seq_along(ids)) { ## dna <- SearchDB(dbConn, identifier=ids[i], remove="all", verbose=FALSE) ## amplicons <- matchLRPatterns(f_primer, r_primer, ## MAX_SIZE, unlist(dna), ## max.Lmismatch=2, max.Rmismatch=2, ## Lfixed="subject", Rfixed="subject") ## amplicons <- as(amplicons, "DNAStringSet") ## if (length(amplicons)==0) ## next ## ## if (TYPE=="sequence") { ## signature <- oligonucleotideFrequency(amplicons, RESOLUTION) ## signatures[, i] <- colMeans(signature) ## } else if (TYPE=="melt") { ## signature <- MeltDNA(amplicons, "melt curves", RESOLUTION) ## # weight melting curves by their amlicon's width ## signature <- t(signature)*width(amplicons) ## signatures[, i] <- colSums(signature)/sum(width(amplicons)) ## } else { # TYPE=="length" ## signature <- .bincode(width(amplicons), RESOLUTION) ## for (j in signature[which(!is.na(signature))]) ## signatures[j, i] <- signatures[j, i] + 1/length(signature) ## } ## } ## ## if (TYPE=="sequence") { ## d <- dist(t(signatures), "minkowski", p=1) # L1-Norm ## Treeline(myDistMatrix=as.matrix(d), method="UPGMA", showPlot=TRUE) ## mtext(paste(RESOLUTION, "-mer Profile Distance", sep=""), ## side=2, padj=-4) ## } else if (TYPE=="melt") { ## matplot(RESOLUTION, signatures, type="l", ## xlab="Temperature (degrees Celsius)", ylab="Average Helicity") ## } else { # TYPE=="length" ## if (length(ids) > 20) { ## plot(NA, ## xlim=c(0.5, length(ids) + 0.5), ylim=range(RESOLUTION), ## xlab="Group Index", ylab="Amplicon Length", ## yaxs="i", xaxs="i") ## axis(1, at=1:length(ids), labels=FALSE, tck=-0.01) ## } else { ## plot(NA, ## xlim=c(0.5, length(ids) + 0.5), ylim=range(RESOLUTION), ## xlab="", ylab="Amplicon Length", ## yaxs="i", xaxs="i", xaxt="n") ## axis(1, at=1:length(ids), labels=abbreviate(ids, 7), las=2) ## } ## xaxs <- RESOLUTION[-1] - diff(RESOLUTION)/2 # average lengths ## for (i in seq_along(ids)) { ## w <- which(signatures[, i] > 0) ## if (length(w) > 0) ## segments(i - 0.45, xaxs[w], i + 0.45, xaxs[w], lwd=2) ## } ## } ################################################### ### code chunk number 16: expr11 (eval = FALSE) ################################################### ## PSET <- which.max(primers$digest_score) # top scoring with digestion ## ## f_primer <- DNAString(primers$forward_primer[PSET]) ## r_primer <- DNAString(primers$reverse_primer[PSET]) ## r_primer <- reverseComplement(r_primer) ## enzyme <- RESTRICTION_ENZYMES[primers$enzyme[PSET]] ## ## signatures[] <- 0 # initialize the results matrix used previously ## for (i in seq_along(ids)) { ## dna <- SearchDB(dbConn, identifier=ids[i], remove="all", verbose=FALSE) ## amplicons <- matchLRPatterns(f_primer, r_primer, ## MAX_SIZE, unlist(dna), ## max.Lmismatch=2, max.Rmismatch=2, ## Lfixed="subject", Rfixed="subject") ## amplicons <- as(amplicons, "DNAStringSet") ## if (length(amplicons)==0) ## next ## digested <- DigestDNA(enzyme, amplicons, strand="top") ## digested <- unlist(digested) # convert to DNAStringSet ## ## if (TYPE=="melt") { ## signature <- MeltDNA(digested, "melt curves", RESOLUTION) ## # weight melting curves by their fragment's width ## signature <- t(signature)*width(digested) ## signatures[, i] <- colSums(signature)/sum(width(digested)) ## } else { # TYPE=="length" ## signature <- .bincode(width(digested), RESOLUTION) ## for (j in signature[which(!is.na(signature))]) ## signatures[j, i] <- signatures[j, i] + 1/length(signature) ## } ## } ## ## if (TYPE=="melt") { ## matplot(RESOLUTION, signatures, type="l", ## xlab="Temperature (degrees Celsius)", ylab="Average Helicity") ## } else { # TYPE=="length" ## if (length(ids) > 20) { ## plot(NA, ## xlim=c(0.5, length(ids) + 0.5), ylim=range(RESOLUTION), ## xlab="Group Index", ylab="Amplicon Length", ## yaxs="i", xaxs="i") ## axis(1, at=1:length(ids), labels=FALSE, tck=-0.01) ## } else { ## plot(NA, ## xlim=c(0.5, length(ids) + 0.5), ylim=range(RESOLUTION), ## xlab="", ylab="Amplicon Length", ## yaxs="i", xaxs="i", xaxt="n") ## axis(1, at=1:length(ids), labels=abbreviate(ids, 7), las=2) ## } ## xaxs <- RESOLUTION[-1] - diff(RESOLUTION)/2 # average lengths ## for (i in seq_along(ids)) { ## w <- which(signatures[, i] > 0) ## if (length(w) > 0) ## segments(i - 0.45, xaxs[w], i + 0.45, xaxs[w], lwd=2) ## } ## } ## zzz <- dbDisconnect(dbConn) ################################################### ### code chunk number 17: sessinfo ################################################### toLatex(sessionInfo(), locale=FALSE)