Package ‘flowStats’

December 13, 2024
Type Package

Title Statistical methods for the analysis of flow cytometry data
Version 4.18.0

Author Florian Hahne, Nishant Gopalakrishnan, Alireza Hadj Khodabakhshi,
Chao-Jen Wong, Kyongryun Lee

Maintainer Greg Finak <greg@ozette.com>, Mike Jiang <mike@ozette.com>

Description Methods and functionality to analyse flow data that is beyond the
basic infrastructure provided by the flowCore package.

Suggests xtable, testthat, openCyto, ggcyto, ggridges
Encoding UTF-8
Depends R (>=3.0.2)

Imports BiocGenerics, MASS, flowCore (>= 1.99.6), flowWorkspace,
ncdfFlow(>= 2.19.5), flowViz, fda (>= 2.2.6), Biobase, methods,
grDevices, graphics, stats, cluster, utils, KernSmooth,
lattice, ks, RColorBrewer, rrcov, corpcor, mnormt, clue

Enhances RBGL,graph
License Artistic-2.0

Lazyload yes
URL http://www.github.com/RGLab/flowStats

BugReports http://www.github.com/RGLab/flowStats/issues
biocViews ImmunoOncology, FlowCytometry, CellBasedAssays
RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/flowStats

git_branch RELEASE_3_20

git_last_commit 5485473

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-12-12

http://www.github.com/RGLab/flowStats
http://www.github.com/RGLab/flowStats/issues

2 flowStats-package

Contents
flowStats-package 2
addName,curv1Filter,character-method 3
autoGate L e 4
BackGating 5
binByRef e 5
calcPBChiSquare 6
calcPearsonChi 7
curvlFilter-class e e 8
curv2Filter-class L. L 10
curvPeaks L L 12
densityld 13
ellipse e 15
fdPar e 15
flowClust2Prior 16
gate_singlet L e e 16
gausSSNOTINL o o o i e e e e e e e 18
SPASE . . . e 19
idFeaturesByBackgating 22
iProcrustes 23
ITN . e 25
landmarkMatrixX e e e e e e 26
lymphFilter-class e 27
mkPrior 29
norm2Filter-class e 30
normalize-methods e 32
normQA e e e e e e e e 34
overton_like L e 35
plotBins 36
PIOtPrior e e e 37
ProBino 37
quadrantGate L 39
rangeGate L L e e e e e 40
SimulateMixture L e e 43
spillover-flowSet 44
spillover_match-flowSet L 45
spillover_ng-flowSet 47
WarpSet e e 49

Index 52

flowStats-package Statistical methods for flow cytometry data analysis
Description

Functions, methods and classes implementing algorithmns for statistical analysis of flow cytometry
data. This involves mostly data normalization and automated gating.

addName,curv1Filter,character-method 3

Details
Package: flowStats
Type: Package
Version: 1.0
License: Artistic-2.0
Lazyload: yes
Author(s)

Florian Hahne

Maintainers: Mike Jiang <mike @ozette.ai>, Jake Wagner <jpwagner @thcrc.org>

addName, curviFilter,character-method
These methods are copied from flowViz to eliminate its dependency on
curvlFilter and curv2Filter

Description

These methods are copied from flowViz to eliminate its dependency on curv1Filter and curv2Filter

Usage

S4 method for signature 'curviFilter,character’
addName(x, name, data, ...)

S4 method for signature 'curviFilter,logical'
addName(x, name, data, ...)

S4 method for signature 'curv2Filter,character
addName(x, name, data, ...)

S4 method for signature 'curv2Filter,logical'’

addName(x, name, data, ...)
Arguments
X curvlFilter, curv2Filter
name character or logical. Names can be generated by the filter or by the user.
data flowFrame

other arguments

Value

The methods are called for their side effects. No value is returned.

4 autoGate

autoGate Automated gating of single populations in 2D

Description

This function tries to fit a single norm2Filter based on a rough preselection of the data. This function
is considered internal. Please use the API provided by lymphGate.

Usage
autoGate(x, ..., scale = 2.5)
Arguments
X An object of class flowSet
Named arguments or a list of the ranges used for the initial rough preselection.
This gets passed on to rectangleGate, see it’s documentation for details.
scale The scale parameter that gets passed on to norm2Filter.
Details

The flowSet is first filtered using a rectangleGate and the norm2Filter is subsequently fitted to
the remaining subset.

Value

A list with items:

X The filtered flowSet.
n2gate The norm2Filter object.
n2gateResults The filterResult after applying the norm2Filter on the flowSet.

Author(s)
Florian Hahne

See Also

lymphGate, norm2Filter

Examples

library(flowCore)
data(GvHD)
flowStats:::autoGate(GvHD[10:15], "FSC-H"=c(100,500), "SSC-H"=c(0, 400))

BackGating 5

BackGating Sample backgating results

Description

A data frame containing the sub-populations of ITN dataset corresponding to the high-density areas
on "FSC" and "SSC" channels. This dataset is yielded by backGating on channel CD3, CD8, and
CD4 of the ITN sample data.

Usage

data(BackGating)

Source

Results from executing the following code:
library(flowCore) data(ITN)
flowStats:::backGating(ITN, xy=c("FSC", "SSC"), channels=c("CD3", "CD8", "CD4"))

binByRef Bin a test data set using bins previously created by probability binning
a control dataset

Description

The bins generated by probability binning a control data set can be applied to a test data set to
perfom statistical comparisions by methods such as the Chi-squared test or the probability binning
statistic.

Usage
binByRef (binRes, data)

Arguments
binRes The result generated by calling teh probBin function on a control dataset.
data An object of class flowFrame

Value

An enviroment containing the matrices for each bin of the test data set

Author(s)

Nishant Gopalakrishnan

See Also

plotBins, proBin

6 calcPBChiSquare

Examples

library(flowCore)

data(GvHD)
resCtrl<-proBin(GvHD[[1]1],200)
resSample<-binByRef (resCtrl,GvHD[[2]])

1s(resSample)
calcPBChiSquare Probability binning metirc for comparing the probability binned
datasets
Description

This function calculates the Probability binning metric proposed by Baggerly et al. The function
utilizes the data binned using the proBin and binByRef functions.

Usage

calcPBChiSquare(ctrlRes, sampRes, ctrlCount, sampCount)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a test sample dataset
ctrlCount The number of events in the control sample
sampCount The number of events in the test sample being compared

Value

A list containing the statistic, p.value, observed, expected counts and the residuals

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

Examples

library(flowCore)

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHD[L[1]1[,c("FSC-H","SSC-H","Time")],200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]][,c("FSC-H","SSC-H","Time")])
ctrlCount<-nrow(GvHD[[1]1])

sampCount<-nrow(GvHD[[16]11])

stat<-calcPBChiSquare(resCtrl, resSample,ctrlCount, sampCount)

calcPearsonChi 7

calcPearsonChi Pearsons chi-square statistic for comparing the probability binned
datasets

Description

This function calculates the Pearsons chi-squared statistic for comparing data binned using the
proBin and binByRef functions.Internally, the function utilizes the chisq.test function.

Usage

calcPearsonChi(ctrlRes, sampRes)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a sample dataset
Value

A list containing the statistic, p.value, observed, expected counts and the residuals

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

Examples

library(flowCore)

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHD[[1]1[,c("FSC-H","SSC-H","Time")],200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]11[,c("FSC-H","SSC-H","Time") 1)
stat<-calcPearsonChi(resCtrl,resSample)

8 curvlFilter-class

curviFilter-class Class "curvlFilter"

Description
Class and constructor for data-driven filter objects that selects high-density regions in one di-
mension.

Usage

curvlFilter(x, bwFac=1.2, gridsize=rep(401, 2),
filterId="defaultCurviFilter")

Arguments
X Character giving the name of the measurement parameter on which the filter is
supposed to work on. This can also be a list containing a single character scalar
for programmatic access.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

Details

Areas of high local density in one dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, I. and Wand, M.P.,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curviFilter is a convenience function for
object instantiation. Evaluating a curviFilter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curviFilters can be used to
split flow cytometry data sets.

Value

Returns a curviFilter object for use in filtering flowFrames or other flow cytometry objects.

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.

parameters: Object of class "character”, describing the parameter used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

curvlFilter-class 9

Objects from the Class

Objects can be created by calls of the form new("curvFilter"”, ...) or using the constructor
curviFilter. Using the constructor is the recommended way of object instantiation:

Methods

%in% signature(x ="flowFrame", table = "curviFilter"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "curviFilter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curviFilters.

Author(s)

Florian Hahne

See Also

curv2Filter, flowFrame, flowSet, filter for evaluation of curviFilters and split for split-
ting of flow cytometry data sets based on that.

Examples

library(flowStats)

library(flowCore)

Loading example data

dat <- read.FCS(system.file("extdata”,"0@877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curviFilter("FSC-H", filterId="myCurviFilter"”, bwFac=2)

To facilitate programmatic construction we also have the following
c1f <- curviFilter(filterId="myCurviFilter", x=list("FSC-H"), bwFac=2)

Filtering using curviFilter
fres <- filter(dat, cif)

fres

summary(fres)

names(fres)

The result of curvl filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("peak 2", "peak 3")))

10 curv2Filter-class

curv2Filter-class Class "curv2Filter"

Description
Class and constructor for data-driven filter objects that selects high-density regions in two di-
mensions.

Usage

curv2Filter(x, y, filterId="defaultCurv2Filter"”, bwFac=1.2,
gridsize=rep(151, 2))

Arguments
Y Characters giving the names of the measurement parameter on which the filter
is supposed to work on. y can be missing in which case x is expected to be a
character vector of length 2 or a list of characters.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

Details

Areas of high local density in two dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, I. and Wand, M.P.,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curv2Filter is a convenience function for
object instantiation. Evaluating a curv2Filter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curv2Filters can be used to
split flow cytometry data sets.

Value

Returns a curv2Filter object for use in filtering flowFrames or other flow cytometry objects.

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.

parameters: Object of class "character”, describing the parameters used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

curv2Filter-class 11

Objects from the Class

Objects can be created by calls of the form new("”curv2Filter”, ...) or using the constructor
curv2Filter. The constructor is the recommended way of object instantiation:

Methods

%in% signature(x ="flowFrame", table = "curv2Filter"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "curv2Filter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curv2Filters.

Author(s)

Florian Hahne

See Also

curviFilter, flowFrame, flowSet, filter for evaluation of curv2Filters and split for split-
ting of flow cytometry data sets based on that.

Examples

library(flowCore)

Loading example data

dat <- read.FCS(system.file("extdata”,"@877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curv2Filter("FSC-H", "SSC-H", filterId="myCurv2Filter")

To facilitate programmatic construction we also have the following
c2f <- curv2Filter(filterId="myCurv2Filter"”, x=list("FSC-H", "SSC-H"),
bwFac=2)

c2f <- curv2Filter(filterId="myCurv2Filter"”, x=c("FSC-H", "SSC-H"),
bwFac=2)

Filtering using curv2Filter
fres <- filter(dat, c2f)

fres

summary (fres)

names(fres)

The result of curv2 filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("area 2", "area 3")))

12 curvPeaks

curv2Filter("FSC-H", "SSC-H", filterId="test filter")

curvPeaks Parse curviFilter output

Description
Parse the output of curviFilter and find modes and midpoints of the high-density regions. This
function is considered to be internal.

Usage

curvPeaks(x, dat, borderQuant = 0.01, n = 201, from, to, densities=NULL)

Arguments

X A multipleFilterResult produced by a curviFilter operation.

dat The corresponding flowFrame.

borderQuant A numeric in [0, 1] giving the extreme quantiles for which high-density regions

are ignored.

n, from, to Arguments are passed on to density.

densities The optional y values of the density estimate computed for the respective data.
Value

A list with items

peaks x and y locations of the modes of the regions in the density estimates.
regions the left and right margins of the regions.

midpoints the mean of regions.

regPoints x and y locations of the outline of the significant density regions.

densFuns an approximation function of the density estimate

Author(s)

Florian Hahne

See Also

landmarkMatrix

Examples

library(flowCore)

data(GvHD)

tmp <- filter(GvHD[[10]], curviFilter("FSC-H"))

res <- flowStats:::curvPeaks(tmp, exprs(GvHD[[10]1)[, "FSC-H"I)

densityld

13

densityld

Find most likely separation between positive and negative populations
in 1D

Description

The function tries to find a reasonable split point between the two hypothetical cell populations
"positive" and "negative". This function is considered internal, please use the API provided by

rangeGate.

Usage

densityld(x, stain, alpha = "min", sd = 2, plot = FALSE, borderQuant =

0.1, absolute

TRUE, inBetween = FALSE, reflLine=NULL,rare=FALSE,bwFac=1.2

,sig=NULL,peakNr=NULL, ...)

Arguments

X

stain

alpha

sd

plot

borderQuant

absolute

inBetween

refLine

rare

A flowSet or flowFrame.

A character scalar giving the flow parameter for which to compute the separa-
tion.

A tuning parameter that controls the location of the split point between the two
populations. This has to be a numeric in the range [0, 1], where values closer
to 0 will shift the split point closer to the negative population and values closer
to 1 will shift towards the positive population. Additionally, the value of alpha
can be "min", in which case the split point will be selected as the area of lowest
local density between the two populations.

For the case where there is only a single population, the algorithm falls back to
esitmating the mode of this population and a robust measure of the variance of
it distribution. The sd tuning parameter controls how far away from the mode
the split point is set.

Create a plot of the results of the computation.

Usualy the instrument is set up in a way that the positive population is some-
where on the high end of the measurement range and the negative population is
on the low end. This parameter allows to disregard populations with mean val-
ues in the extreme quantiles of the data range. It’s value should be in the range

o,1].

Logical controling whether to classify a population (positive or negative) relative
to the theoretical measurment range of the instrument or the actual range of the
data. This can be set to TRUE if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical range.

Force the algorithm to put the separator in between two peaks. If there are more
than two peaks, this argument is ignored.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and negative.

Either TRUE or FALSE, assumes that there is one major peak, and that the rare
positive population is to the right of it. Uses a robust estimate of mean and
variance to gate the positive cells.

14 density 1d

bwFac The bandwidth for smoothing the density estimate. User-tunable

sig a value of c(NULL,"L","R"),when sig is not NULL,use the half (left or right) of
signal to estimate the std and mean.

peakNr when peakNr is not NULL,drop the less significant peaks by their heights

Further arguments.

Details

The algorithm first tries to identify high density regions in the data. If the input is a flowSet, den-
sity regions will be computed on the collapsed data, hence it should have been normalized before
(see warpSet for one possible normalization technique). The high density regions are then clasified
as positive and negative populations, based on their mean value in the theoretical (or absolute if
argument absolute=TRUE) measurement range. In case there are only two high-density regions the
lower one is usually clasified as the negative populations, however the heuristics in the algorithm
will force the classification towards a positive population if the mean value is already very high.
The absolute and borderQuant arguments can be used to control this behaviour. The split point
between populations will be drawn at the value of mimimum local density between the two popu-
lations, or, if the alpha argument is used, somewhere between the two populations where the value
of alpha forces the point to be closer to the negative (@ - @.5) or closer to the positive population
0.5-1).

If there is only a single high-density region, the algorithm will fall back to estimating the mode
of the distribution (hubers) and a robust measure of it’s variance and, in combination with the sd
argument, set the split point somewhere in the right or left tail, depending on the classification of
the region.

For more than two populations, the algorithm will still classify each population into positive and
negative and compute the split point between those clusteres, similar to the two population case.

Value

A numeric indicating the split point between positive and negative populations.

Author(s)
Florian Hahne

See Also

warpSet, rangeGate

Examples

library(flowCore)

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh("FL4-H>), "FL3-H"=asinh("FL3-H"))
d <- flowStats:::densityld(dat, "FL4-H", plot=TRUE)
if(require(flowViz))

densityplot(~~FL4-H, dat, refline=d)

tweaking the location
flowStats:::densityld(dat, "FL4-H", plot=TRUE, alpha=0.8)

only a single population

ellipse 15

flowStats:::densityld(dat, "FL3-H", plot=TRUE)
flowStats:::densityld(dat, "FL3-H", plot=TRUE, sd=2)

ellipse convert ellipse from cov/mu to points used to plot priors

Description

convert ellipse from cov/mu to points used to plot priors

Usage

ellipse(cov, centre, level = 0.95)

fdPar The version of fdPar from fda 2.4.0 because the new API changes the
output. (specifically resfdcoefs) and thus breaks the landmarkreg
call.
Description

The version of fdPar from fda 2.4.0 because the new API changes the output. (specifically resfdcoefs)
and thus breaks the landmarkreg call.

Usage
fdPar(fdobj = NULL, Lfdobj = NULL, lambda = @, estimate = TRUE, penmat = NULL)

Arguments
fdobj functional data object, functional basis object, a functional parameter object or
a matrix. If it a matrix, it is replaced by fd(fdobj). If class(fdobj) == "basisfd’,
it is converted to an object of class fd with a coefficient matrix consisting of a
single column of zeros.
Lfdobj either a nonnegative integer or a linear differential operator object. If NULL,
Lfdobj depends on fdobj[['basis']I[['type']1]
* bspline Lfdobj <- int2Lfd(max (@, norder-2)), where norder = norder (fdobj)
* fourier Lfdobj = a harmonic acceleration operator: Lfdobj <- vec2Lfd(c (0, (2*pi/diff(rng).
rng) where rng = fdobj[['basis']][['rangeval']].
e anything else Lfdobj <- int2Lfd(0)
lambda a nonnegative real number specifying the amount of smoothing to be applied to
the estimated functional parameter.
estimate not currently used.
penmat a roughness penalty matrix. Including this can eliminate the need to compute

this matrix over and over again in some types of calculations.

16 gate_singlet

flowClust2Prior Generate a prior specification based on a flowClust model This func-
tion generates a prior specification based on a flowClust fit object It
can be passed to a second round of flowClust() with usePrior="yes"
The prior could be estimated from a single sample, for example, and
then used to speed up the convergence for other samples.

Description

Generate a prior specification based on a flowClust model This function generates a prior spec-
ification based on a flowClust fit object It can be passed to a second round of flowClust() with
usePrior="yes" The prior could be estimated from a single sample, for example, and then used to
speed up the convergence for other samples.

Usage
flowClust2Prior(x, kappa, Nt = NULL, addCluster = NULL)

Arguments
X a flowClust fit object
kappa is the fraction of equivalent observations by which to weight this prior relative
to the flowClust model.
Nt the number of total equivalent observation
addCluster not currently supported
gate_singlet Creates a singlet polygon gate using the prediction bands from a ro-
bust linear model
Description

We construct a singlet gate by applying a robust linear model with r1lm. By default, we model the
forward-scatter height (FSC-H)as a function of forward-scatter area (FSC-A). If sidescatter is
given, forward-scatter height is as a function of area + sidescatter + sidescatter / area.

Usage

gate_singlet(
X,
area = "FSC-A",
height = "FSC-H",
sidescatter = NULL,
prediction_level = 0.99,
subsample_pct = NULL,
wider_gate = FALSE,
filterId = "singlet",
maxit = 5,

gate_singlet 17

)

singletGate(
X,
area = "FSC-A",
height = "FSC-H",
sidescatter = NULL,
prediction_level = 0.99,
subsample_pct = NULL,
wider_gate = FALSE,
filterId = "singlet",

maxit = 5,
)
Arguments
X a flowFrame object
area character giving the channel name that records the signal intensity as peak area
height character giving the channel name that records the signal intensity as peak heightchan-
nel name of height
sidescatter character giving an optional channel name for the sidescatter signal. By default,

ignored.

prediction_level

a numeric value between 0 and 1 specifying the level to use for the prediction
bands

subsample_pct a numeric value between 0 and 1 indicating the percentage of observations that
should be randomly selected from x to construct the gate. By default, no sub-
sampling is performed.

wider_gate logical value. If TRUE, the prediction bands used to construct the singlet gate use
the robust fitted weights, which increase prediction uncertainty, especially for
large FSC-A. This leads to wider gates, which are sometimes desired.

filterId the name for the filter that is returned
maxit the limit on the number of IWLS iterations passed to rlm

additional arguments passed to rlm

Details

Because rlmrelies on iteratively reweighted least squares (IRLS), the runtime to construct a singlet
gate is dependent in part on the number of observations in x. To improve the runtime, we provide
an option to subsample randomly a subset of x. A percentage of observations to subsample can be
given in subsample_pct. By default, no subsampling is applied.

Value

a polygonGate object with the singlet gate

18

Examples

Not run:

gaussNorm

fr is a flowFrame
sg <- gate_singlet(fr, area = "FSC-A", height = "FSC-H")

sg

plot the gate

xyplot("FSC-H™ ~ “FSC-A", fr, filter = sg)

End(Not run)

gaussNorm

Per-channel normalization based on landmark registration

Description

This funciton normalizes a set of flow cytometry data samples by identifying and aligning the high
density regions (landmarks or peaks) for each channel. The data of each channel is shifted in such
a way that the identified high density regions are moved to fixed locations called base landmarks.

Usage

gaussNorm (flowset, channel.names, max.lms=2, base.lms=NULL,
peak.density.thr=0.05, peak.distance.thr=0.05, debug=FALSE, fname='")

Arguments

flowset
channel . names

max.lms

base.lms

A flowSet.
A character vector of flow parameters in flowset to be normalized.

A numeric vector of the maximum number of base landmarks to be used for
normalizing each channel. If it has only one value that will be used as the
maximum number of base landmarks for all the channels.

A list of vector for each channel that contains the base landmarks for normaliz-
ing that channel. If not specified the base landmarks are computed from the set
of extracted landmarks.

peak.density. thr

The peaks with density value less than "peak.density.thr times maximum peak
density" are discarded.

peak.distance. thr

debug

fname

The sequences of peaks that are located closer than "peak.distance.thr times
range of data" are identified. Then for each sequence only one peak (the one
with the highest intensity value) is used as a landmark. In other words no two
landmarks are located closer than "peak.distance.thr times range of data" to each
other.

Logical. Forces the function to draw before and after normalization plots for
each sample. The plot of the i-th sample is stored in paste(fname, 1) file.

The pre- and post- normalization plots of the i-th sample is stored in paste(fname,
i) file if debug is set to TRUE. If default value is used the plots are drawn on sep-
arate X11 windows for each sample. In this case, the function waits for a user
input to draw the plots for the next sample.

gpaSet 19

Details

Normalization is archived in three phases: (i) identifying high-density regions (landmarks) for each
flowFrame in the flowSet for a single channel; (ii) computing the best matching between the
landmarks and a set of fixed reference landmarks for each channel called base landmarks; (iii)
manipulating the data of each channel in such a way that each landmark is moved to its matching
base landmark. Please note that this normalization is on a channel-by-channel basis. Multiple
channels are normalized in a loop.

Value

A list with items flowset: normalized flowSet. confidence: a confidence measure of the nor-
malization procedure.

Author(s)

Alireza Hadj Khodabakhshi

Examples

library(flowCore)
data(ITN)
dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
lg <- lymphGate(dat, channels=c("CD3", "SSC"), preselection="CD4",6 scale=1.5)
dat <- Subset(dat, 1lg)
datr <- gaussNorm(dat, "CD8")$flowset
if(require(flowViz)){
dl <- densityplot(~CD8, dat, main="original”, filter=curvi1Filter("CD8"))
d2 <- densityplot(~CD8, datr, main="normalized"”, filter=curv1Filter("CD8"))
plot(dl, split=c(1,1,2,1))
plot(d2, split=c(2,1,2,1), newpage=FALSE)

gpaSet Multi-dimensional normalization of flow cytometry data

Description

This function performs a multi-dimensional normalization of flow cytometry data (flowSets) using
a generalized Procrustes analysis (GPA) method.

Usage

gpaSet(x, params, register="backgating”, bgChannels=NULL,
bg=NULL, rotation.only=TRUE,
downweight.missingFeatures=FALSE, thres.sigma=2.5,
show.workflow=FALSE,
ask=names(dev.cur())!="pdf")

20 gpaSet

Arguments

X A flowSet.

params A character vector of length 2 describing the channels of interest.

register A character indicating the method to be used for identifying features. Available
method only includes “backgating” at the point.

bgChannels A character vector indicating the channels used for backgating. If NULL, backGating
will find the appropriate backgating channels.

bg A data frame as the returning value of the backGating function. If not NULL,

gpaSet will skip the backGating process and use the given data frame to extract
potential features.

rotation.only Logical for coarsing a reflection matrix to a rotation matrix.

downweight.missingFeatures
Logical. If TRUE, the missing features, labeled as bogus features, are down-
weighted to zero. See details.

thres.sigma A numerical value indicating the threshold of where to cut the tree, e.g., as
resulting from diana, into several clusters. It is default to 2.5 sigma of the
distribution of the heights of the cluster points.

show.workflow Logical. If TRUE, the workflow of gpaSet will be displayed.
ask Logical. If TRUE, the display operates in interactive mode.

Details

Normalization is achieved by first identifying features for each flowFrame in the flowSet for des-
ignated channels using backgating, subsequently labeling features, and finally aligning the features
to a reference feature in the sense of minimizing the Frobenus norm of

HSFQ—FHa

where s is a scalar, () a rotational matrix, F' the matrix of features, and F the reference feature.
Both s and @) are solved by using singular value decomposition (SVD).

Note that if feature Fj; is missing, it is given a bogus value as Fij.

If downweight.missingFeatures is TRUE, the cost function becomes
HSWOFQ — W()FH,
where the weighting function W), is zero if the corresponding feature is bogus.

Value

The normalized flowSet with "GPA" attribute.

Author(s)

C. J. Wong <cwon2@fhcrc.org>

References

in progress

gpaSet 21

Examples

library(flowCore)

Example 1: calling up gpaSet directly
data(ITN)

data(BackGating)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- transform(ITN, tl)

xy = c("FSC", "SSC")

bgChannels = c("CD8", "CD4", "CD3")

bg <- flowStats:::backGating(dat, xy=xy, channels=bgChannels)
using pre-generated backgating results: BackGating

s <- gpaSet(dat, params=xy, bgChannels=bgChannels, bg=BackGating)

if(require(flowviz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),
layout=c(2,1), main="After GPA using bg")
d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),
channels=c("FSC", "SSC"), main="All flowFrames")
plot(dl)
plot(d2)

view "GPA" attribute
attr(s, "GPA")

Not run:
library(flowCore)
Example 2: using work flow and normalization objects
data(ITN)
ITN <- ITN[1:8,]
wf <- workFlow(ITN)
tl <~ transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
add(wf, tl)
x <- Data(wf[["asinh"11)
normalize 'FSC' and 'SSC' channels
norm <- normalization(normFun=function(x, parameters, ...)
gpaSet(x, parameters, ...),
parameters = c("FSC", "SSC"),
arguments=1list(bgChannels=c("CD8", "CD3"),
register="backgating”),
normalizationId="Procrustes")

add(wf, norm2, parent="asinh")
s <- Data(wf[["Procrustes”]])
if(require(flowVviz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),
layout=c(2,1), main="After GPA using bg")
d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),
channels=c("FSC", "SSC"), main="All flowFrames")
plot(dl)
plot(d2)
3

End(Not run) ## end of dontrun

22

idFeaturesByBackgating

idFeaturesByBackgating

(Internal use only) Identify features of flow cytometry data using back-
gating

Description

Identify and labeling significant features using divisive clustering method such as diana.

Usage

idFeaturesByBackgating(bg, nDim, thres.sigma=2.5, lambda=0.1,

Arguments

bg

nDim

thres.sigma

lambda

reference.method="median",
plot.workflow=FALSE, ask=names(dev.cur())!="pdf")

A data frame containing subpopulations on channels of interests. Must be a
returning result from flowStats: : :backGating

An integer indicating the length of channels of interest.

An numerical value indicating the threshold at which to cut tree, e.g., as resulting
from ’diana’, into several clusters.

A numerical value indicating the percentage of the potential features that is used
as a threshold for deciding outlier clusters. The default value is 0.1.

reference.method

plot.workflow

ask

Details

A character vector indicating the method for computing the reference features. If
median, the reference feature is defined by the medain of eac cluster of features.
Valid methods include median and mean only.

Logical. If TURE, display the workflow of feature identification.
Logical. If TRUE, the display operates in interactive mode.

Using the resulting data frame from backGating as potential features, the algorithm follows four
major steps: (i) centering the potential features, which yields the returning value TransMatrix,
(ii) using diana to compute a clustering of the potential features, (iii) cutting the tree into several
clusters, and (iv) accessing outliers and rendering the final registered features with labels.

In step three, the threshold for cutting the tree is computed by

sd x thres.sigma,

where sd is the standard deviation of the distribution of the height between entities computed by

diana.

A cluster is determined as an outlier if the number of its members is less than the median of the
numbers of all clusters’ members times ’lambda’.

iProcrustes 23

Value

register A list containing registered features for each sample.

Author(s)
Chao-Jen Wong

See Also

diana, BackGating, gpaSet.

Examples

Not run:

library(flowCore)

data(ITN)

wf <- workFlow(ITN)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- trnasformList(ITN, tl)

bg <- backGating(dat, xy=c("FSC", "SSC"), channels="CD3")

End(Not run)

data(BackGating)
results <- flowStats:::idFeaturesByBackgating(bg=BackGating, nDim=2,
plot.workflow=TRUE, ask=TRUE)

iProcrustes Procrustes analysis. Using singular value decomposition (SVD) to
determine a linear transformation to align the points in X to the points
in a reference matrix Y.

Description

Based on generalized Procrustes analysis, this function determines a linear transformation (rota-
tion/reflection and scalling) of the points in matrix x to align them to their reference points in
matrix xbar. The alignemnt is carried out by minimizing the distance between the points in x and
xbar.

Usage

iProcrustes(x, xbar, rotation.only=TRUE, scalling=TRUE, translate=FALSE)

Arguments

X A numerical matrix to be align to points in xbar, the second arguement. The
columns represents the coordinates of the points. The matrices x and xbar must
have the same dimensions.

xbar A numerical, reference matrix to which points in matrix x are to be aligned.

24

rotation.only

scalling

translate

Details

iProcrustes

Logical. When rotaion.only is TRUE, it allows the function to lose reflection
component of the linear transformation. Although it might not give the best-
fitting aligenment, when dealing with flow cytometry data alignment, a non-
reflection transformation is prefered. When rotaion.only is FALSE, it allows
the function to retain the reflection component.

Logical. When scalling is FALSE, it allows the function to calculate the linear
transformation without a scalling factor. That is, the returning scalling factor is
setto 1.

Logical. Set translate to FALSE when the points in matrices x and xbar are
already centralized prior to applying this function. When translate is TRUE,
it allows the function to translate the centroid the points in matrix x to that of
points in xbar.

Suppose the points in matrix X and X are centralized (meaning their centroids are at the origin).
The linear transformation of X for aligning X to its reference matrix X ., i.e., min |[sXQ — X||r,

is given by:

and

Q=VvUT,

s = trace(XT X Q) /trace(XT X),

where V and U are the sigular value vectors of XTX (thatis, XTX = ULVT), and s is the scalling

factor.

Value

A list of the linear tranformation with items

Q

scal

T.xbar

An orthogonal, rotation/reflection matrix.

A scalling factor

(optional) A translation vector used to shift the centroid of the points in matrix
x to the origin. Returned when translate is TRUE.

(optional) Centered xbar (that is, the centroid of the points in xbar is translated
to the origin). Returned when translate is TRUE.

Note that the return values of this function do not include the transformed matrix scal * x * @) or
scal x (x — IT) = @, where T is the translation vector and [is an n — by — 1 vector with elements

1.

Author(s)

C. J. Wong <cwon2@fhcrc.org>

See Also

gpaSet

ITN

Examples

Example 1

x <= matrix(runif(20), nrow=10, ncol=2)+ 1.4

s <- matrix(c(cos(60), -sin(60@), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)

xbar <- 2.2 *(x %*% s) - 0.1

1t <- iProcrustes(x, xbar, translate=TRUE) ## return linear transformation
1t

showing result

I <- matrix(1, nrow=nrow(x), ncol=1)
tx <= x = I %x% 1t$T

get the transformed matrix xnew
xnew <- lt$scal * (tx %*% 1t$Q)

if (require(lattice)) {
xyplot(Vl ~ V2,
do.call(make.groups, lapply(list(x=x, xbar=xbar, T.xbar=1t$T.xbar,
xnew=xnew), as.data.frame)),
group=which, aspect=c(0.7), pch=c(1,3,2,4), col.symbol="black",
main=("Align the points in x to xbar"),
key=list(points=list(pch=c(1,3,2,4), col="black"), space="right",
text=list(c("x", "xbar"”, "T.xbar", "xnew"))))

}

Example 2. centralized x and xbar prior to using iProcrustes
x <= matrix(runif(10), nrow=5, ncol=2)
s <- matrix(c(cos(60), -sin(60), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)
xbar <= 1.2 *(x %*x% s) - 2
I <- matrix(1, nrow=nrow(x), ncol=1)
x <= x=(I %x% colMeans(x)) ## shift the centroid of points in x to the origin
xbar <- xbar - (I %*% colMeans(xbar)) ## shift centroid to the origin
1t <- iProcrustes(x, xbar, translate=FALSE) ## return linear transformation
only return the rotation/reflection matrix and scalling factor
1t

xnew=1t$scal *(x %*% 1t$Q) ## transformed matrix aligned to centralized xbar
if (require(lattice)) {
xyplot(V1l ~ V2,
do.call(make.groups, lapply(list(x=x,xbar=xbar,
xnew=xnew), as.data.frame)),
group=which, auto.key=list(space="right"))

25

ITN Sample flow cytometry data

Description

A flowSet cotaining data from 15 patients.

26

Usage
data(ITN)

Format

landmarkMatrix

A flowSet containing 15 flowFrames. There are 3 patient groups with 5 samples each.

Source

Immune Tolerance Network

landmarkMatrix

Compute and cluster high density regions in 1D

Description

This functions first identifies high-density regions for each flowFrame in a flowSet and subse-
quently tries to cluster these regions, yielding the landmarks matrix that needs to be supplied to
landmarkreg. The function is considered to be internal.

Usage

landmarkMatrix(data, fres, parm, border=0.05, peakNr=NULL, densities =
NULL, n = 201, indices=FALSE)

Arguments

data

fres

parm

border

peakNr

densities

n

indices

Details

A flowSet.

A list of filterResultList objects generated by a filtering opration using a
curvlFilter. Each list item represents the results for one of the flow parame-
ters in parm.

Character scalar of flow paramater to compute landmarks for.

A numeric in [@,1]. Ignore all high-density regions with mean values in the
extreme percentiles of the data range.

Force a fixed number of peaks.

An optional matrix of y values of the density estimates for the flowSet. If this
is not present, density estimates will be calculated by the function.

Number of bins used for the density estimation.

Return matrix of population indices instead of landmark locations. These in-
dices can be used to point into the populations identified by the curv1Filter.

In order to normalize the data using the landmarkreg function in the fda, a set of landmarks has
to be computed for each flowFrame in a flowSet. The number of lansmarks has to be the same
for each frame. This function identifies high-density regions in each frame, computes a simple
clustering and returns a matrix of landmark locations. Missing landmarks of individual frames are
substituted by the mean landmark location of the respective cluster.

lymphFilter-class 27

Value

A matrix of landmark locations. Columns are landmarks and rows are flowFrames.

A