Package 'diffuStats'

September 15, 2024

Type Package

Title Diffusion scores on biological networks

Version 1.24.0

Description Label propagation approaches are a widely used procedure in computational biology for giving context to molecular entities using network data. Node labels, which can derive from gene expression, genome-wide association studies, protein domains or metabolomics profiling, are propagated to their neighbours in the network, effectively smoothing the scores through prior annotated knowledge and prioritising novel candidates. The R package diffuStats contains a collection of diffusion kernels and scoring approaches that facilitates their computation, characterisation and benchmarking.

Depends R ($>= 3.4$)

Imports grDevices, stats, methods, Matrix, MASS, checkmate, expm, igraph, Rcpp, RcppArmadillo, RcppParallel, plyr, precrec

License GPL-3

LazyData true

Encoding UTF-8

RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown, ggplot2, ggsci, igraphdata, BiocStyle, reshape2, utils

LinkingTo Rcpp, RcppArmadillo, RcppParallel

SystemRequirements GNU make

VignetteBuilder knitr

biocViews Network, GeneExpression, GraphAndNetwork, Metabolomics, Transcriptomics, Proteomics, Genetics, GenomeWideAssociation, Normalization

git_url https://git.bioconductor.org/packages/diffuStats

2 Contents

git_branch RELEASE_3_19

git_last_commit 0d21dac

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-09-15

Author Sergio Picart-Armada [aut, cre], Alexandre Perera-Lluna [aut]

Maintainer Sergio Picart-Armada <sergi.picart@upc.edu>

Contents

Index [32](#page-31-0)

.check_scores ensures that scores are suitable for diffusion .available_methods is a character vector with the implemented scores .check_method ensures that 'method' is a valid character .check_metric ensures that 'metric' is a valid list of metric functions .check_graph ensures that 'graph' is a valid igraph object .check_K ensures that 'K' is a formally valid kernel. Does not check for spd

Usage

.check_scores(scores)

- .available_methods
- .check_method(method)

.check_metric(metric)

.check_graph(graph)

.check_K(K)

Arguments

Format

An object of class character of length 7.

Value

Functions return invisible() but throw warnings and errors as side effect

Examples

```
data(graph_toy)
diffuStats:::.check_scores(diffuStats:::to_list(graph_toy$input_mat))
diffuStats:::.check_method("raw")
diffuStats:::.check_metric(list(auc = metric_fun(curve = "ROC")))
data(graph_toy)
diffuStats:::.check_graph(graph_toy)
data(graph_toy)
diffuStats:::.check_K(regularisedLaplacianKernel(graph_toy))
```
.connect_undirected_graph *Function to connect a non connected graph*

Description

Function to connect a non connected graph

Usage

.connect_undirected_graph(g)

Arguments

g an igraph object

Value

a connected igraph object

```
library(igraph)
g <- diffuStats:::.connect_undirected_graph(
    graph.empty(10, directed = FALSE))
g
```


.default_graph_param *Generate data.frame with default vertex attributes*

Description

Generate data.frame with default vertex attributes Default proportions for randomly generated graphs

Usage

```
.default_graph_param()
```
.default_prop

Format

An object of class numeric of length 3.

Value

data.frame with default node class attributes named numeric with default class proportions

convertSparse *S4 sparse matrix to arma::sp_mat*

Description

Convert an S4 sparse matrix from the [Matrix](#page-0-0) package to an arma sp_mat.

Usage

convertSparse(mat)

Arguments

mat S4 sparse matrix from the [Matrix](#page-0-0)

Value

an arma::sp_mat object

Source

<http://gallery.rcpp.org/articles/armadillo-sparse-matrix/>

Function diffuse takes a network in **igraph** format (or a graph kernel matrix stemming from a graph) and an initial state to score all the nodes in the network. The seven diffusion scores hereby provided differ on (a) how they distinguish positives, negatives and unlabelled examples, and (b) their statistical normalisation. The argument method offers the following options:

Methods without statistical normalisation:

• raw: positive nodes introduce unitary flow $(y_{\text{raw}[i]} = 1)$ to the network, whereas neither negative nor unlabelled nodes introduce anything $(y_{\text{row}}[j] = 0)$ [Vandin, 2011]. They are computed as:

$$
f_{raw} = K \cdot y_{raw}
$$

where K is a graph kernel, see ?kernels. These scores treat negative and unlabelled nodes equivalently.

- ml: same as raw, but negative nodes introduce a negative unit of flow [Zoidi, 2015] and are therefore not equivalent to unlabelled nodes.
- gm: same as ml, but the unlabelled nodes are assigned a (generally non-null) bias term based on the total number of positives, negatives and unlabelled nodes [Mostafavi, 2008].
- ber_s: this is a quantification of the relative change in the node score before and after the network smoothing. The score for a particular node i can be written as

$$
f_{ber_s,i} = \frac{f_{raw,i}}{y_{raw,i} + \epsilon}
$$

where eps is a parameter controlling the importance of the relative change.

Methods with statistical normalisation: the raw diffusion score of every node i is computed and compared to its own diffusion scores stemming from a permuted input.

• mc: the score of node i is based in its empirical p-value, computed by permuting the input n.perm times:

$$
p_i = \frac{r_i + 1}{n.perm + 1}
$$

p[i] is roughly the proportion of input permutations that led to a diffusion score as high or higher than the original diffusion score (a total of $r[i]$ for node i, in absolute terms). This assesses how likely a high diffusion score is to arise from chance, in absence of signal. To be consistent with the direction, mc is defined as:

$$
f_{mc,i} = 1 - p_i
$$

• ber_p: as used in [Bersanelli, 2016], this score combines raw and mc, in order to take into account both the magnitude of the raw scores and the effect of the network topology:

$$
f_{ber_p,i} = -\log_{10}(p_i) \cdot f_{raw,i}
$$

diffuse **7**

• z: this is a parametric alternative to mc. The raw score of node i is subtracted its mean value and divided by its standard deviation. The statistical moments have a closed analytical form, see the main vignette, and are inspired in [Harchaoui, 2013]. Unlike mc and ber_p, the z scores do not require actual permutations, giving them an advantage in terms of speed.

If the input labels are not quantitative, i.e. $positive(1)$, negative(0) and possibly unlabelled, all the scores (raw, gm, ml, z, mc, ber_s, ber_p) can be used. Quantitative inputs are naturally defined on raw, z, mc, ber_s and ber_p by extending the definitions above, and are readily available in diffuStats. Further details on the scores can be found in the main vignette.

Usage

```
diffuse(graph, scores, method, ...)
diffuse_grid(scores, grid_param, ...)
```
Arguments

Details

Input scores can be specified in three formats. A single set of scores to smooth can be represented as (1) a named numeric vector, whereas if several of these vectors that share the node names need to be smoothed, they can be provided as (2) a column-wise matrix. However, if the unlabelled entities are not the same from one case to another, (3) a named list of such score matrices can be passed to this function. The input format will be kept in the output.

The implementation of mc and ber_p is optimized for sparse inputs. Dense inputs might take a longer time to compute. Another relevant note: z can give NaN for a particular node when the observed nodes are disconnected from the node being scored. This is because these nodes are neither annotated with experimental not network (topology) data.

Value

diffuse returns the diffusion scores, with the same format as scores

diffuse_grid returns a data frame containing the diffusion scores for the specified combinations of parameters

References

Scores "raw": Vandin, F., Upfal, E., & Raphael, B. J. (2011). Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 18(3), 507-522.

Scores "ml": Zoidi, O., Fotiadou, E., Nikolaidis, N., & Pitas, I. (2015). Graph-based label propagation in digital media: A review. ACM Computing Surveys (CSUR), 47(3), 48.

Scores "gm": Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). Gene-MANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome biology, 9(1), S4.

Scores "mc", "ber_s", "ber_p": Bersanelli, M., Mosca, E., Remondini, D., Castellani, G., & Milanesi, L. (2016). Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Scientific reports, 6.

Scores "z": Harchaoui, Z., Bach, F., Cappe, O., & Moulines, E. (2013). Kernel-based methods for hypothesis testing: A unified view. IEEE Signal Processing Magazine, 30(4), 87-97.

```
##############################
```

```
library(igraph)
library(ggplot2)
data(graph_toy)
input_vec <- graph_toy$input_vec
n <- vcount(graph_toy)
```

```
##############################
```

```
# Examples for 'diffuse':
# Using a binary vector as input
diff_scores <- diffuse(
   graph = graph\_toy,
   scores = input_vec,
   method = "raw")# Using a matrix as input
diff_scores <- diffuse(
   graph = graph\_toy,scores = graph_toy$input_mat,
   method = "raw")# Using a list of matrices as input
diff_scores <- diffuse(
   graph = graph_toy,
```
diffuse 9

```
scores = list(myScores1 = graph_toy$input_mat,
       myScores2 = head(graph_toy$input_mat, n/2)),
    method = "raw")##############################
# Examples for 'diffuse_grid':
# Using a single vector of scores and comparing the methods
# "raw", "ml", and "z"
df_diff <- diffuse_grid(
    graph = graph_toy,
    scores = graph_toy$input_vec,
    grid\_param = expand.grid(method = c("raw", "ml", "z"))head(df_diff)
# Same settings, but comparing several choices of the
# parameter epsilon ("eps") in the scores "ber_s"
df_diff <- diffuse_grid(
    graph = graph_toy,
    scores = graph_toy$input_vec,
    grid\_param = expand.grid(method = "ber_s", ops = 1:5/5))ggplot(df_diff, aes(x = factor(eps), fill =eps, y = node_score) +
   geom_boxplot()
# Using a matrix with four set of scores
# called Single, Row, Small_sample, Large_sample
# See the 'quickstart' vignette for more details on these toy scores
# We compute scores for methods "ber_p" and "mc" and
# permute both 1e3 and 1e4 times in each run
df_diff <- diffuse_grid(
   graph = graph_toy,
    scores = graph_toy$input_mat,
    grid_param = expand.grid(
       method = c("mc", "ber_p"),n.perm = c(1e3, 1e4)))
dim(df_diff)
head(df_diff)
##############################
# Differences when using (1) a quantitative input and
# (2) different backgrounds.
# In this example, the
# small background contains binary scores and continuous scores for
# half of the nodes in the 'graph_toy' example graph.
# (1) Continuous scores have been generated by
# changing the positive labels to a random, positive numeric value.
# The user can see the impact of this in the scores 'raw', 'ber_s',
```

```
# (2) The larger background is just the small background
# completed with zeroes, both for binary and continuous scores.
# This illustrates how 'raw' and 'ber_s' treat unlabelled
# and negative labels equally, whereas 'ml', 'gm', 'ber_p',
# 'mc' and 'z' do not.
# Examples:
# The input:
lapply(graph_toy$input_list, head)
# 'raw' scores treat equally unlabelled and negative nodes,
# and can account for continuous inputs
diff_raw <- diffuse(
   graph = graph_toy,
   scores = graph_toy$input_list,
   method = "raw")lapply(diff_raw, head)
# 'z' scores distinguish unlabelled and negatives and accepts
# continuous inputs
diff_z <- diffuse(
   graph = graph_toy,
   scores = graph_toy$input_list,
   method = "z")lapply(diff_z, head)
# 'ml' and 'gm' are the same score if there are no unobserved nodes
diff_compare <- diffuse_grid(
   graph = graph_toy,
    scores = input_vec,
   grid\_param = expand.grid(method = c("raw", "ml", "gm"))\lambdadf_compare <- reshape2::acast(
    diff_compare,
    node_id~method,
    value.var = "node_score")
head(df_compare)
# 'ml' and 'gm' are different in presence of unobserved nodes
diff_compare <- diffuse_grid(
    graph = graph_toy,
    scores = head(input_vec, n/2),
    grid_param = expand.grid(method = c("raw", "ml", "gm"))
\lambdadf_compare <- reshape2::acast(
    diff_compare,
    node_id~method,
    value.var = "node_score")
head(df_compare)
```
Function diffuse_mc has an implemented parallelisation of the Monte Carlo trials for diffusion in a network. The input scores are assumed to be sparse and are internally sparsified, so very dense scores migth take time with current implementation.

Usage

```
diffuse_mc(
   graph,
    scores,
    n.perm = 10000,
    sample.prob = NULL,
    seed = 1,
    oneminusHeatRank = TRUE,
   K = NULL,...
)
```
Arguments

Value

A list containing matrices of heatrank scores

Examples

```
# Using a list as input (needed)
data(graph_toy)
list_input <- list(myInput1 = graph_toy$input_mat)
diff_mc <- diffuse_mc(
   graph = graph_toy,
   scores = list_input)
```
diffuse_raw *Diffuse scores on a network*

Description

Function diffuse takes a network in **igraph** format and an initial state to score all the nodes in the network.

Usage

```
diffuse_raw(graph, scores, z = FALSE, K = NULL, ...)
```
Arguments

Value

A list of scores, with the same length and dimensions as scores

```
# Using a list as input (needed)
data(graph_toy)
list_input <- list(myInput1 = graph_toy$input_mat)
diff_raw <- diffuse_raw(
    graph = graph_toy,
   scores = list_input)
diff_z <- diffuse_raw(
   graph = graph_toy,
   scores = list_input,
   z = TRUE
```


The diffuStats package consists of (i) functions to compute graph kernels, see [kernels](#page-15-1), (ii) the function [diffuse](#page-5-1) to compute the diffusion scores and (iii) the function [perf_eval](#page-24-1) and its wrapper [perf](#page-23-1) to compute performance measures. The user can find two vignettes in browseVignettes("diffuStats"): (1) a quick start with concise examples and (2) a detailed explanation of the implemented methods with a practical case study using a yeast protein dataset.

Author(s)

Sergio Picart-Armada <sergi.picart@upc.edu>, Alexandre Perera-Lluna

References

General references:

Most of the graph kernels can be found in: Smola, A. J., & Kondor, R. (2003, August). Kernels and regularization on graphs. In COLT (Vol. 2777, pp. 144-158).

The statistical normalisation of the diffusion scores, which has interest per se, has been introduced in: Bersanelli, M., Mosca, E., Remondini, D., Castellani, G., & Milanesi, L. (2016). Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Scientific reports, 6.

generate_graph *Generate a random graph*

Description

Function generate_graph generates a random network using **igraph** graph generators. Several models are available, and

Usage

```
generate_graph(
    fun_gen,
    param_gen,
    class_label = NULL,
    class_attr = default\_graph\_param(),
    fun_curate = .connect_undirected_graph,
    seed = NULL
)
```
Arguments

Value

An igraph object

Examples

```
g <- generate_graph(
   fun_gen = igraph::barabasi.game,
   param_gen = list(n = 100, m = 3, directed = FALSE),
   seed = 1)
g
```


Description

Function generate_input generates a random list of nodes from an igraph object. It also specifies the true solution generating the list. The graph object needs to have some attributes (automatically added through generate_graph)

Usage

```
generate_input(graph, order, length_inputs, return_matrix = TRUE, seed = NULL)
```
Arguments

graph_toy 15

Value

A list whose elements are lists with three slots: pos for the true signal generators, neg for the nodes that did not generate signal and input for the signal itself

Examples

```
g <- generate_graph(
    fun_gen = igraph::barabasi.game,
   param\_gen = list(n = 200, m = 3, directed = FALSE),seed = 1)
synth_input <- generate_input(
   g,
   order = 2,
   length\_inputs = 3, return_matrix = TRUEstr(synth_input)
```
graph_toy *Toy graph to play with diffusion*

Description

Small graph that can easily be plotted and experimented with. It has graphical parameters included, such as the vertex colour and the layout. It also includes an example input. Has graph attributes with example inputs and outputs, see input_* and output_* from list.graph.attributes(graph_toy)

Usage

graph_toy

Format

An object of class igraph of length 10.

Value

An igraph object

This function checks whether the eigenvalues are non-negative

Usage

 $is_{\text{general}(x, tol = 1e-08)}$

Arguments

Value

scores in desired format

Examples

```
data(graph_toy)
K <- regularisedLaplacianKernel(graph_toy)
is_kernel(K)
is\_kernel(K - 1)
```
kernels *Compute graph kernels*

Description

Function commuteTimeKernel computes the conmute-time kernel, which is the expected time of going back and forth between a couple of nodes. If the network is connected, then the commute time kernel will be totally dense, therefore reflecting global properties of the network. For further details, see [Yen, 2007]. This kernel can be computed using both the unnormalised and normalised graph Laplacian.

Function diffusionKernel computes the classical diffusion kernel that involves matrix exponentiation. It has a "bandwidth" parameter σ^2 that controls the extent of the spreading. Quoting [Smola, 2003]: $K(x1,x2)$ can be visualized as the quantity of some substance that would accumulate at vertex x2 after a given amount of time if we injected the substance at vertex x1 and let it diffuse through the graph along the edges. This kernel can be computed using both the unnormalised and normalised graph Laplacian.

kernels and the set of t

Function inverseCosineKernel computes the inverse cosine kernel, which is based on a cosine transform on the spectrum of the normalized Laplacian matrix. Quoting [Smola, 2003]: the inverse cosine kernel treats lower complexity functions almost equally, with a significant reduction in the upper end of the spectrum. This kernel is computed using the normalised graph Laplacian.

Function pStepKernel computes the p-step random walk kernel. This kernel is more focused on local properties of the nodes, because random walks are limited in terms of length. Therefore, if p is small, only a fraction of the values $K(x1,x2)$ will be non-null if the network is sparse [Smola, 2003]. The parameter a is a regularising term that is summed to the spectrum of the normalised Laplacian matrix, and has to be 2 or greater. The p-step kernels can be cheaper to compute and have been successful in biological tasks, see the benchmark in [Valentini, 2014].

Function regularisedLaplacianKernel computes the regularised Laplacian kernel, which is a standard in biological networks. The regularised Laplacian kernel arises in numerous situations, such as the finite difference formulation of the diffusion equation and in Gaussian process estimation. Sticking to the heat diffusion model, this function allows to control the constant terms summed to the diagonal through add_diag, i.e. the strength of the leaking in each node. If a node has diagonal term of 0, it is not allowed to disperse heat. The larger the diagonal term of a node, the stronger the first order heat dispersion in it, provided that it is positive. Every connected component in the graph should be able to disperse heat, i.e. have at least a node i with $add_diag[i] > 0$. If this is not the case, the result diverges. More details on the parameters can be found in [Smola, 2003]. This kernel can be computed using both the unnormalised and normalised graph Laplacian.

Usage

```
commuteTimeKernel(graph, normalized = FALSE)
diffusionKernel(graph, sigma2 = 1, normalized = TRUE)inverseCosineKernel(graph)
pStepKernel(graph, a = 2, p = 5L)
regularisedLaplacianKernel(graph, sigma2 = 1, add_diag = 1, normalized = FALSE)
```
Arguments

Details

Please be aware that the kernel computation can be rather slow and memory demanding. This is a reference table of the peak memory usage and computing time for the regularised Laplacian kernel given the order of the network:

5k: 900MB & 250s

10k: 3,200MB & 2,200s

15k: 8,000MB & 8,000s 20k: 13,000MB & 21,000s

However, given a network to study, this step is a one-time task than can be stored and reused.

Value

A kernel matrix with adequate dimnames

References

The regularised Laplacian, diffusion, p-step and inverse cosine kernels: Smola, A. J., & Kondor, R. (2003, August). Kernels and regularization on graphs. In COLT (Vol. 2777, pp. 144-158).

The commute time kernel: Yen, L., Fouss, F., Decaestecker, C., Francq, P., & Saerens, M. (2007). Graph nodes clustering based on the commute-time kernel. Advances in Knowledge Discovery and Data Mining, 1037-1045.

Benchmark on kernels: Valentini, G., Paccanaro, A., Caniza, H., Romero, A. E., & Re, M. (2014). An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artificial Intelligence in Medicine, 61(2), 63–78.

Examples

```
data(graph_toy)
K_lap <- regularisedLaplacianKernel(graph_toy)
K_diff <- diffusionKernel(graph_toy)
K_pstep <- pStepKernel(graph_toy)
K_ct <- commuteTimeKernel(graph_toy)
K_ic <- inverseCosineKernel(graph_toy)
is_kernel(K_lap)
```
largest_cc *Largest connected component*

Description

Obtain the largest connected component of an igraph object

Usage

largest_cc(g)

metric_auc 19

Arguments

g igraph object

Value

A connected igraph object

Examples

```
library(igraph)
set.seed(1)
g \leftarrow erdos.renyi.game(30, p.or.m = .05)
largest_cc(g)
```
metric_auc *Compute the area under the curves (ROC, PRC)*

Description

Function metric_auc computes the AUROC (Area Under the Receiver Operating Characteristic Curve) and the AUPRC (Area Under the Precision Recall Curve), measures of goodness of a ranking in a binary classification problem. Partial areas are also supported. Important: the higher ranked classes are assumed to ideally target positives (label $= 1$) whereas lower ranks correspond to negatives (label = θ).

Function metric_fun is a wrapper on metric_auc that returns a function for performance evaluation. This function takes as input actual and predicted values and outputs a performance metric. This is needed for functions such as [perf](#page-23-1) and [perf_eval](#page-24-1), which iterate over a list of such metric functions and return the performance measured through each of them.

Usage

```
metric_auc(
    actual,
    predicted,
    curve = "ROC",partial = c(0, 1),
    standardized = FALSE
\lambdametric_fun(...)
```
Arguments

Details

The AUROC is a scalar value: the probability of a randomly chosen positive having a higher rank than a randomly chosen negative. AUROC is cutoff-free and an informative of the performance of a ranker. Likewise, AUPRC is the area under the Precision-Recall curve and is also a standard metric for binary classification. Both measures can be found in [Saito, 2017].

AUROC and AUPRC have their partial counterparts, in which only the area enclosed up to a certain false positive rate (AUROC) or recall (AUPRC) is accounted for. This can be useful when assessing the goodness of the ranking, focused on the top entities.

The user can, however, define his or her custom performance metric. AUROC and AUPRC are common choices, but other problem-specific metrics might be of interest. For example, number of hits in the top k nodes. Machine learning metrics can be found in packages such as Metrics and MLmetrics from the CRAN repository (<http://cran.r-project.org/>).

Value

metric_auc returns a numeric value, the area under the specified curve

metric_fun returns a function (performance metric)

References

Saito, T., & Rehmsmeier, M. (2017). Precrec: fast and accurate precision–recall and ROC curve calculations in R. Bioinformatics, 33(1), 145-147.

```
# generate class and numeric ranking
set.seed(1)
n < -50actual \leftarrow rep(0:1, each = n/2)predicted <- ifelse(
    actual == 1,
    runif(n, min = 0.2, max = 1),
    runif(n, min = 0, max = 0.8))
```
moments 21

```
# AUROC
metric_auc(actual, predicted, curve = "ROC")
# partial AUC (up until false positive rate of 10%)
metric_auc(
    actual, predicted, curve = "ROC",
    partial = c(0, 0.1)# The same are, but standardised in (0, 1)
metric_auc(
    actual, predicted, curve = "ROC",
    partial = c(0, 0.1), standardized = TRUE)
# AUPRC
metric_auc(actual, predicted, curve = "PRC")
# Generate performance functions for perf and perf_eval
f_roc <- metric_fun(
    curve = "ROC", partial = c(\emptyset, \emptyset.5),
    standardized = TRUE)
f_roc
f_{\text{rec}}(actual = actual, predicted = predicted)
```
moments *Compute exact statistical moments*

Description

Function get_mu() computes the exact expected values of the null distributions

Function get_covar() computes the exact covariance matrix of the null distributions (square matrix, same size as kernel matrix); the variances are the values in the matrix diagonal

Function get_mu_reference() computes the reference expected values (one scalar value for each node/entity)

Function get_var_reference() computes the reference variances (one scalar value for each node/entity), log10-transformed

Usage

get_mu(K, id_labelled = colnames(K), mu_y)

get_covar(K, id_labelled = colnames(K), var_y)

get_mu_reference(K, id_labelled = colnames(K))

```
get_var_reference(K, id_labelled = colnames(K))
```
22 moments

Arguments

Details

These functions enable exploring the properties of the null distributions of diffusion scores. They provide the exact statistical moments mentioned in:

Sergio Picart-Armada, Wesley K Thompson, Alfonso Buil, Alexandre Perera-Lluna. The effect of statistical normalisation on network propagation scores. Bioinformatics, 2020, btaa896. https://doi.org/10.1093/bioinformatic

Specifically, get_mu_reference() and get_var_reference() provide the so-called 'Reference expected values' and 'Reference variances', which are input-independent (one only needs the kernel and the ids of the labelled nodes). Getting the actual expected values and variances requires providing the input expected value and variance, and can be achieved with get_mu() and get_covar().

Value

get_mu_reference(), get_var_reference() and get_mu() return a vector, whereas get_covar() returns a square matrix.

References

Article: https://doi.org/10.1093/bioinformatics/btaa896 Functions: https://github.com/b2slab/diffuBench/blob/master/helper

```
data(graph_toy)
## Kernel
K_pstep <- pStepKernel(graph_toy)
## Labelled nodes
ids <- head(rownames(K_pstep), ncol(K_pstep)/3)
## Reference values
get_mu_reference(K_pstep, ids)
get_var_reference(K_pstep, ids)
## Actual moments with an input y
y <- graph_toy$input_vec[ids]
mu_y \leftarrow mean(y)var_y \leftarrow var(y)mu <- get_mu(K_pstep, ids, mu_y = mu_y)
covar <- get_covar(K_pstep, ids, var_y = var_y)
## mean values
mu
## variances
diag(covar)
## covariances
covar[1:6, 1:6]
```


Create a list with variables and name the slots using the variables names

Usage

```
named.list(...)
```
Arguments

... Variables to pack in a list

Value

A list of variables

Examples

diffuStats:::named.list(LETTERS, mean)

ParallelHeatrank *Compute heatrank in parallel*

Description

ParallelHeatrank is a wrapper that computes heatranks for (possibly) different backgrounds and for multiple inputs at once. It will reuse the permutations, which have to be passed to the function. The input must be binary for this implementation, so numeric values for each node are not supported.

Usage

```
ParallelHeatrank(R, perm, G)
```
Arguments

Value

a matrix with the same amount of rows that R and columns in G, containing the heatrank scores. These scores are corrected using $(r + 1)/(p + 1)$ instead of r/p . The smaller the score, the warmer the node.

perf *Compare diffusions to a target score on a grid of parameters*

Description

Function perf computes diffusion scores on a grid of parameters and evaluates them using the gold standard scores provided by the user.

Usage

```
perf(
    scores,
    validation,
    grid_param,
    metric = list(auc = metric_fun(curve = "ROC")),
    ...
)
```
Arguments

Details

Function perf takes a network in **igraph** format, an initial state to score all the nodes in the network, a target score set. To explore the parameter combinations, it needs a grid and a list of metrics to apply. The validation scores might be only a subset of the network nodes, in which case the metric will be restricted to this set as well.

perf_eval 25

Value

A data frame containing the performance of each diffusion score

Examples

```
# Using a single vector of scores
data(graph_toy)
df_perf <- perf(
   graph = graph_toy,
   scores = graph_toy$input_vec,
   validation = graph_toy$input_vec,
   grid_param = expand.grid(method = c("raw", "ml")))
df_perf
# Using a matrix with four set of scores
# called Single, Row, Small_sample, Large_sample
df_perf <- perf(
   graph = graph_toy,
   scores = graph_toy$input_mat,
   validation = graph_toy$input_mat,
   grid\_param = expand.grid(method = c("raw", "ml")))df_perf
```
perf_eval *Compute performance of diffusion scores on a single case*

Description

Function perf_eval directly compares a desired output with the scores from diffusion. It handles the possible shapes of the scores (vector, matrix, list of matrices) and gives the desired metrics.

Usage

```
perf_eval(
   prediction,
    validation,
   metric = list(auc = metric_fun(curve = "ROC"))
)
```
Arguments

Value

A data frame containing the metrics for each comparable pair of output-validation.

Examples

```
# Using a matrix with four set of scores
# called Single, Row, Small_sample, Large_sample
data(graph_toy)
diff <- diffuse(
   graph = graph_toy,
   scores = graph_toy$input_mat,
   method = "raw")df_perf <- perf_eval(
   prediction = diff,
   validation = graph_toy$input_mat)
df_perf
```
perf_wilcox *Compute column-wise statistics in a performance matrix*

Description

Function perf_wilcox compares all the columns of a matrix through a [wilcox.test](#page-0-0). The columns are assumed to be performance measures (e.g. AUROC) whereas the rows are instances.

Usage

```
perf_wilcox(
   perf_mat,
    adjust = function(p) states::p.addjust(p, method = "fdr"),ci = 0.95,digits_ci = 2,
   digits_p = 3,
    ...
)
```
Arguments

scores2colours 27

Details

The statistical comparison of the columns is intended to ease comparisons between methods in a rigorous way. Methods are compared pairwise and a p-value for difference in performance. The function perf_wilcox returns a character matrix so that (1) the upper triangular matrix contains confidence intervals on the estimate of the difference between performances, and (2) the lower triangular matrix contains the two-tailed p-value that tests difference in performance, with multiple testing correction. The comparison takes place between row and column in that precise order: a positive difference favours the row and a negative one, the column.

Value

Character matrix. The upper triangular matrix contains a confidence interval and the estimate of the pairwise difference in performance. The lower triangular matrix shows the associated two-tailed p-value, with multiple testing correction.

Examples

```
# Dummy data frame to test
n < - 100perf_mat <- cbind(
   good = runif(n = n, min = 0.5, max = 1),so\_so = runif(n = n, min = 0.2, max = 0.7),
   bad = runif(n = n, min = 0, max = 0.5)
)
wilcox_mat <- perf_wilcox(perf_mat)
# See how the methods in the rows compare to those
# in the columns, confidence interval
# (upper) and p-value (lower)
wilcox_mat
```
scores2colours *Translate values into colours*

Description

Create a vector of hex colours from numeric values, typically diffusion scores

Usage

```
scores2colours(
    x,
    range = c(min(\emptyset, min(x)), max(x)),n. colors = 10,palette = colorRampPalette(c("#3C5488FF", "white", "#F39B7FFF"))
)
```
Arguments

Value

Character vector with hex colours

Examples

```
set.seed(1)
scores2colours(runif(20))
```
scores2shapes *Translate values into shapes*

Description

Translate 0/1 to shapes, by default "circle" and "square"

Usage

```
scores2shapes(x, shapes = c("circle", "square"))
```
Arguments

Value

Character vector with shapes

```
set.seed(1)
scores2shapes(rbinom(n = 20, size = 1, prob = .5))
```


The heatrank incorporates the correction $(r + 1)/(p + 1)$ instead of r/p

Usage

serialHeatrank(R, perm, G, ind)

Arguments

Value

an arma::vec with node heatranks

Description

Return permutations as a numeric sparse matrix (can be binary or continuous)

Usage

sparsify2(perm, nrow, G)

Arguments

Value

an arma::sp_mat object

Convert any input to list format

Usage

```
to_list(scores, dummy_column = "X1", dummy_list = "X1")
```
Arguments

scores object to reformat dummy_column, dummy_list character, names for the dummy columns/items

Value

scores in list format

Examples

data(graph_toy) x_v <- diffuStats:::to_list(graph_toy\$input_vec) x_m <- diffuStats:::to_list(graph_toy\$input_mat)

to_x_from_list *Convert list format to desired format*

Description

Convert any list format to the convenient one

Usage

to_x_from_list(scores, x)

Arguments

Value

scores in desired format

which_format 31

Examples

```
data(graph_toy)
x_v <- diffuStats:::to_x_from_list(
   diffuStats:::to_list(graph_toy$input_vec), "vector")
x_m <- diffuStats:::to_x_from_list(
    diffuStats:::to_list(graph_toy$input_vec), "matrix")
```
which_format *In which format is the input?*

Description

Tell apart vector, matrix or list of matrices

Usage

which_format(x)

Arguments

x object to evaluate

Value

character: vector, matrix or list.

```
data(graph_toy)
diffuStats:::which_format(graph_toy$input_vec)
diffuStats:::which_format(graph_toy$input_mat)
```
Index

∗ datasets .check_scores, [3](#page-2-0) .default_graph_param, [5](#page-4-0) graph_toy, [15](#page-14-0) .available_methods *(*.check_scores*)*, [3](#page-2-0) .check_K *(*.check_scores*)*, [3](#page-2-0) .check_graph *(*.check_scores*)*, [3](#page-2-0) .check_method *(*.check_scores*)*, [3](#page-2-0) .check_metric *(*.check_scores*)*, [3](#page-2-0) .check_scores, [3](#page-2-0) .connect_undirected_graph, [4](#page-3-0) .default_graph_param, [5](#page-4-0) .default_prop *(*.default_graph_param*)*, [5](#page-4-0)

```
barabasi.game, 14
```
colorRampPalette, *[28](#page-27-0)* commuteTimeKernel *(*kernels*)*, [16](#page-15-0) convertSparse, [5](#page-4-0)

diffuse, [6,](#page-5-0) *[13](#page-12-0)* diffuse_grid *(*diffuse*)*, [6](#page-5-0) diffuse_mc, [11](#page-10-0) diffuse_raw, [12](#page-11-0) diffusionKernel *(*kernels*)*, [16](#page-15-0) diffuStats, [13](#page-12-0)

erdos.renyi.game, *[14](#page-13-0)*

```
format, 26
```
generate_graph, [13](#page-12-0) generate_input, *[14](#page-13-0)*, [14](#page-13-0) get_covar *(*moments*)*, [21](#page-20-0) get_mu *(*moments*)*, [21](#page-20-0) get_mu_reference *(*moments*)*, [21](#page-20-0) get_var_reference *(*moments*)*, [21](#page-20-0) graph_toy, [15](#page-14-0)

inverseCosineKernel *(*kernels*)*, [16](#page-15-0) is_kernel, [16](#page-15-0)

kernels, *[13](#page-12-0)*, [16](#page-15-0) largest_cc, [18](#page-17-0) make_lattice, *[14](#page-13-0)* Matrix, *[5](#page-4-0)* metric_auc, [19,](#page-18-0) *[20](#page-19-0)* metric_fun *(*metric_auc*)*, [19](#page-18-0) moments, [21](#page-20-0) named.list, [23](#page-22-0) p.adjust, *[26](#page-25-0)* ParallelHeatrank, [23](#page-22-0) part, *[20](#page-19-0)* perf, *[13](#page-12-0)*, *[19](#page-18-0)*, [24](#page-23-0) perf_eval, *[13](#page-12-0)*, *[19](#page-18-0)*, [25](#page-24-0) perf_wilcox, [26](#page-25-0) pStepKernel *(*kernels*)*, [16](#page-15-0) regularisedLaplacianKernel *(*kernels*)*, [16](#page-15-0) sample, *[11](#page-10-0)* scores2colours, [27](#page-26-0) scores2shapes, [28](#page-27-0) serialHeatrank, [29](#page-28-0) sparsify2, [29](#page-28-0) to_list, [30](#page-29-0) to_x_from_list, [30](#page-29-0) watts.strogatz.game, *[14](#page-13-0)* which_format, [31](#page-30-0) wilcox.test, *[26](#page-25-0)*