
Package ‘MSnbase’
October 31, 2024

Title Base Functions and Classes for Mass Spectrometry and Proteomics

Version 2.32.0

Description MSnbase provides infrastructure for manipulation,
processing and visualisation of mass spectrometry and
proteomics data, ranging from raw to quantitative and
annotated data.

Author Laurent Gatto, Johannes Rainer and Sebastian Gibb with
contributions from Guangchuang Yu, Samuel Wieczorek, Vasile-Cosmin
Lazar, Vladislav Petyuk, Thomas Naake, Richie Cotton, Arne Smits,
Martina Fisher, Ludger Goeminne, Adriaan Sticker, Lieven
Clement and Pascal Maas.

Maintainer Laurent Gatto <laurent.gatto@uclouvain.be>

Depends R (>= 3.5), methods, BiocGenerics (>= 0.7.1), Biobase (>=
2.15.2), mzR (>= 2.29.3), S4Vectors, ProtGenerics (>= 1.29.1)

Imports MsCoreUtils, PSMatch, BiocParallel, IRanges (>= 2.13.28),
plyr, vsn, grid, stats4, affy, impute, pcaMethods, MALDIquant
(>= 1.16), mzID (>= 1.5.2), digest, lattice, ggplot2, scales,
MASS, Rcpp

Suggests testthat, pryr, gridExtra, microbenchmark, zoo, knitr (>=
1.1.0), rols, Rdisop, pRoloc, pRolocdata (>= 1.43.3), magick,
msdata (>= 0.19.3), roxygen2, rgl, rpx, AnnotationHub,
BiocStyle (>= 2.5.19), rmarkdown, imputeLCMD, norm, gplots,
XML, shiny, magrittr, SummarizedExperiment

LinkingTo Rcpp

License Artistic-2.0

LazyData yes

VignetteBuilder knitr

Encoding UTF-8

BugReports https://github.com/lgatto/MSnbase/issues

URL https://lgatto.github.io/MSnbase

biocViews ImmunoOncology, Infrastructure, Proteomics,
MassSpectrometry, QualityControl, DataImport

Roxygen list(markdown=TRUE)

RoxygenNote 7.3.1

1

https://github.com/lgatto/MSnbase/issues
https://lgatto.github.io/MSnbase

2 Contents

Collate 'AllClassUnions.R' 'AllGenerics.R' 'DataClasses.R' 'MzTab.R'
'NAnnotatedDataFrame.R' 'NTR.R' 'RcppExports.R' 'TMT10.R'
'TMT11.R' 'TMT16.R' 'TMT6.R' 'TMT7.R' 'averageMSnSet.R'
'cache.R' 'coerce.R' 'combineFeatures.R' 'compfnames.R'
'environment.R' 'fData-utils.R' 'fdata-selection.R' 'foi.R'
'functions-Chromatogram.R' 'functions-MChromatograms.R'
'functions-MIAPE.R' 'functions-MSnExp.R'
'functions-MSnProcess.R' 'functions-MSnSet.R'
'functions-MSpectra.R' 'functions-OnDiskMSnExp.R'
'functions-ReporterIons.R' 'functions-Spectrum.R'
'functions-Spectrum1.R' 'functions-Spectrum2.R'
'functions-addIdentificationData.R' 'functions-mzR.R'
'functions-plotting.R' 'hmap.R' 'iPQF.R' 'iTRAQ4.R' 'iTRAQ5.R'
'iTRAQ8.R' 'iTRAQ9.R' 'imputation.R' 'map.R' 'matching.R'
'methods-Chromatogram.R' 'methods-MChromatograms.R'
'methods-MIAPE.R' 'methods-MSnExp.R' 'methods-MSnProcess.R'
'methods-MSnSet.R' 'methods-MSnSetList.R' 'methods-MSpectra.R'
'methods-OnDiskMSnExp.R' 'methods-ReporterIons.R'
'methods-Spectrum.R' 'methods-Spectrum1.R'
'methods-Spectrum2.R' 'methods-all.equal.R' 'methods-filters.R'
'methods-fragments.R' 'methods-mzR.R' 'methods-other.R'
'methods-pSet.R' 'methods-updateObjectTo.R' 'methods-write.R'
'missing-data.R' 'nadata.R' 'nav.R' 'options.R'
'plotting-MSnExp.R' 'plotting-MSnSet.R' 'plotting-Spectrum.R'
'plotting-Spectrum1.R' 'plotting-Spectrum2.R'
'plotting-dataframe.R' 'quantitation-MS2-isobaric.R'
'quantitation-MS2-labelfree.R' 'readChromData.R' 'readMSData.R'
'readMSData2.R' 'readMSnSet.R' 'readMzXMLData.R'
'readWriteMgfData.R' 'readWriteMzTab.R' 'utils.R'
'writeMSData.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/MSnbase

git_branch RELEASE_3_20

git_last_commit 5c32fb1

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-10-30

Contents
addIdentificationData-methods . 4
aggvar . 7
as . 8
averageMSnSet . 9
bin-methods . 10
calculateFragments-methods . 11
Chromatogram . 13
chromatogram,MSnExp-method . 20
clean-methods . 23
combineFeatures . 24
combineSpectra,MSnExp-method . 27

Contents 3

combineSpectraMovingWindow . 29
commonFeatureNames . 32
compareMSnSets . 33
compareSpectra-methods . 33
consensusSpectrum . 34
Deprecated . 36
estimateMzResolution,MSnExp-method . 36
estimateMzScattering . 38
estimateNoise-methods . 39
expandFeatureVars . 40
extractPrecSpectra-methods . 41
extractSpectraData . 41
factorsAsStrings . 42
FeatComp-class . 43
featureCV . 44
FeaturesOfInterest-class . 45
fillUp . 48
filterIdentificationDataFrame . 48
formatRt . 49
getVariableName . 50
grepEcols . 51
hasSpectra . 52
imageNA2 . 52
impute,MSnSet-method . 53
iPQF . 55
isCentroidedFromFile . 56
iTRAQ4 . 57
itraqdata . 58
listOf . 58
makeCamelCase . 59
makeNaData . 60
MChromatograms . 61
meanMzInts . 69
MIAPE-class . 72
missing-data . 74
MSmap-class . 75
MSnbaseOptions . 78
MSnExp-class . 79
MSnProcess-class . 82
MSnSet-class . 83
MSnSetList-class . 89
MSpectra . 91
MzTab-class . 97
naplot . 99
navMS . 100
nFeatures . 101
normalise-methods . 102
normToReference . 103
npcv . 104
nQuants . 105
OnDiskMSnExp-class . 106
pickPeaks-methods . 113

4 addIdentificationData-methods

plot-methods . 114
plot.Spectrum.Spectrum-methods . 116
plot2d-methods . 118
plotDensity-methods . 119
plotMzDelta-methods . 120
plotNA-methods . 121
precSelection . 122
ProcessingStep-class . 123
pSet-class . 124
purityCorrect-methods . 127
quantify-methods . 130
readMgfData . 133
readMSData . 134
readMSnSet . 136
readMzIdData . 138
readMzTabData . 139
readMzTabData_v0.9 . 140
readSRMData . 141
reduce,data.frame-method . 142
removeNoId-methods . 143
removePeaks-methods . 144
removeReporters-methods . 146
ReporterIons-class . 147
selectFeatureData . 149
smooth-methods . 150
Spectrum-class . 151
Spectrum1-class . 153
Spectrum2-class . 154
TMT6 . 155
trimMz-methods . 156
updateObject-methods . 157
writeMgfData-methods . 157
writeMSData,MSnExp,character-method . 158
writeMzTabData . 160

Index 161

addIdentificationData-methods

Adds Identification Data

Description

These methods add identification data to a raw MS experiment (an "MSnExp" object) or to quanti-
tative data (an "MSnSet" object). The identification data needs to be available as a mzIdentML file
(and passed as filenames, or directly as identification object) or, alternatively, can be passed as an
arbitrary data.frame. See details in the Methods section.

addIdentificationData-methods 5

Details

The featureData slots in a "MSnExp" or a "MSnSet" instance provides only one row per MS2 spec-
trum but the identification is not always bijective. Prior to addition, the identification data is filtered
as documented in the filterIdentificationDataFrame function: (1) only PSMs matching the
regular (non-decoy) database are retained; (2) PSMs of rank greater than 1 are discarded; and (3)
only proteotypic peptides are kept.

If after filtering, more then one PSM per spectrum are still present, these are combined (reduced,
see reduce,data.frame-method) into a single row and separated by a semi-colon. This has as
side-effect that feature variables that are being reduced are converted to characters. See the reduce
manual page for examples.

See also the section about identification data in the MSnbase-demo vignette for details and addi-
tional examples.

After addition of the identification data, new feature variables are created. The column nprot
contains the number of members in the protein group; the columns accession and description
contain a semicolon separated list of all matches. The columns npsm.prot and npep.prot repre-
sent the number of PSMs and peptides that were matched to a particular protein group. The col-
umn npsm.pep indicates how many PSMs were attributed to a peptide (as defined by its sequence
pepseq). All these values are re-calculated after filtering and reduction.

Methods

signature(object = "MSnExp", id = "character", ... Adds the identification data stored in
mzIdentML files to a "MSnExp" instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnExp", id = "mzID", ...) Same as above but id is a mzID object gen-
erated by mzID::mzID. See below for additional arguments.

signature(object = "MSnExp", id = "mzIDCollection", ...) Same as above but id is a mzIDCollection
object. See below for additional arguments.

signature(object = "MSnExp", id = "mzRident", ... Same as above but id is a mzRident ob-
ject generated by mzR::openIdfile. See below for additional arguments.

signature(object = "MSnExp", id = "data.frame", ... Same as above but id could be a data.frame.
See below for additional arguments.

signature(object = "MSnSet", id = "character", ...) Adds the identification data stored in
mzIdentML files to an "MSnSet" instance. The method handles one or multiple mzIdentML
files provided via id. id has to be a character vector of valid filenames. See below for
additional arguments.

signature(object = "MSnSet", id = "mzID", ...) Same as above but id is a mzID object. See
below for additional arguments.

signature(object = "MSnSet", id = "mzIDCollection", ...) Same as above but id is a mzIDCollection
object. See below for additional arguments.

signature(object = "MSnSet", id = "data.frame", ...) Same as above but id is a data.frame.
See below for additional arguments.

The methods above take the following additional argument. These need to be set when adding
identification data as a data.frame. In all other cases, the defaults are set automatically.

fcol The matching between the features (raw spectra or quantiative features) and identification
results is done by matching columns in the featue data (the featureData slot) and the identi-
fication data. These values are the spectrum file index and the acquisition number, passed as

6 addIdentificationData-methods

a character of length 2. The default values for these variables in the object’s feature data
are "spectrum.file" and "acquisition.num". Values need to be provided when id is a
data.frame.

icol The default values for the spectrum file and acquisition numbers in the identification data (the
id argument) are "spectrumFile" and "acquisitionNum". Values need to be provided when
id is a data.frame.

acc The protein (group) accession number or identifier. Defaults are "DatabaseAccess" when
passing filenames or mzRident objects and "accession" when passing mzID or mzIDCollection
objects. A value needs to be provided when id is a data.frame.

desc The protein (group) description. Defaults are "DatabaseDescription" when passing file-
names or mzRident objects and "description" when passing mzID or mzIDCollection ob-
jects. A value needs to be provided when id is a data.frame.

pepseq The peptide sequence variable name. Defaults are "sequence" when passing filenames
or mzRident objects and "pepseq" when passing mzID or mzIDCollection objects. A value
needs to be provided when id is a data.frame.

key The key to be used when the identification data need to be reduced (see details section). De-
faults are "spectrumID" when passing filenames or mzRident objects and "spectrumid"
when passing mzID or mzIDCollection objects. A value needs to be provided when id is a
data.frame.

decoy The feature variable used to define whether the PSM was matched in the decoy of regular
fasta database for PSM filtering. Defaults are "isDecoy" when passing filenames or mzRident
objects and "isdecoy" when passing mzID or mzIDCollection objects. A value needs to be
provided when id is a data.frame. See filterIdentificationDataFrame for details.

rank The feature variable used to defined the rank of the PSM for filtering. Defaults is "rank". A
value needs to be provided when id is a data.frame. See filterIdentificationDataFrame
for details.

accession The feature variable used to defined the protein (groupo) accession or identifier for PSM
filterin. Defaults is to use the same value as acc . A value needs to be provided when id is a
data.frame. See filterIdentificationDataFrame for details.

verbose A logical defining whether to print out messages or not. Default is to use the session-
wide open from isMSnbaseVerbose.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de> and Laurent Gatto

See Also

filterIdentificationDataFrame for the function that filters identification data, readMzIdData
to read the identification data as a unfiltered data.frame and reduce,data.frame-method to re-
duce it to a data.frame that contains only unique PSMs per row.

Examples

find path to a mzXML file
quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "mzXML$")
find path to a mzIdentML file
identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "dummyiTRAQ.mzid")

aggvar 7

create basic MSnExp
msexp <- readMSData(quantFile)

add identification information
msexp <- addIdentificationData(msexp, identFile)

access featureData
fData(msexp)

idSummary(msexp)

aggvar Identify aggregation outliers

Description

This function evaluates the variability within all protein group of an MSnSet. If a protein group is
composed only of a single feature, NA is returned.

Usage

aggvar(object, groupBy, fun)

Arguments

object An object of class MSnSet.

groupBy A character containing the protein grouping feature variable name.

fun A function the summarise the distance between features within protein groups,
typically max or mean.median.

Details

This function can be used to identify protein groups with incoherent feature (petides or PSMs)
expression patterns. Using max as a function, one can identify protein groups with single extreme
outliers, such as, for example, a mis-identified peptide that was erroneously assigned to that protein
group. Using mean identifies more systematic inconsistencies where, for example, the subsets of
peptide (or PSM) feautres correspond to proteins with different expression patterns.

Value

A matrix providing the number of features per protein group (nb_feats column) and the aggrega-
tion summarising distance (agg_dist column).

Author(s)

Laurent Gatto

See Also

combineFeatures to combine PSMs quantitation into peptides and/or into proteins.

8 as

Examples

library("pRolocdata")
data(hyperLOPIT2015ms3r1psm)
groupBy <- "Protein.Group.Accessions"
res1 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = max)
res2 <- aggvar(hyperLOPIT2015ms3r1psm, groupBy, fun = mean)
par(mfrow = c(1, 3))
plot(res1, log = "y", main = "Single outliers (max)")
plot(res2, log = "y", main = "Overall inconsistency (mean)")
plot(res1[, "agg_dist"], res2[, "agg_dist"],

xlab = "max", ylab = "mean")

as Coerce identification data to a data.frame

Description

A function to convert the identification data contained in an mzRident object to a data.frame.
Each row represents a scan, which can however be repeated several times if the PSM matches
multiple proteins and/or contains two or more modifications. To reduce the data.frame so that
rows/scans are unique and use semicolon-separated values to combine information pertaining a
scan, use reduce.

Arguments

from An object of class mzRident defined in the mzR package.

Details

See also the Tandem MS identification data section in the MSnbase-demo vignette.

Value

A data.frame

Author(s)

Laurent Gatto

Examples

find path to a mzIdentML file
identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "dummyiTRAQ.mzid")
library("mzR")
x <- openIDfile(identFile)
x
as(x, "data.frame")

averageMSnSet 9

averageMSnSet Generate an average MSnSet

Description

Given a list of MSnSet instances, typically representing replicated experiments, the function returns
an average MSnSet.

Usage

averageMSnSet(x, avg = function(x) mean(x, na.rm = TRUE), disp = npcv)

Arguments

x A list of valid MSnSet instances to be averaged.

avg The averaging function. Default is the mean after removing missing values, as
computed by function(x) mean(x, na.rm = TRUE).

disp The disperion function. Default is an non-parametric coefficient of variation that
replaces the standard deviation by the median absolute deviation as computed
by mad(x)/abs(mean(x)). See npcv for details. Note that the mad of a single
value is 0 (as opposed to NA for the standard deviation, see example below).

Details

This function is aimed at facilitating the visualisation of replicated experiments and should not be
used as a replacement for a statistical analysis.

The samples of the instances to be averaged must be identical but can be in a different order (they
will be reordered by default). The features names of the result will correspond to the union of the
feature names of the input MSnSet instances. Each average value will be computed by the avg
function and the dispersion of the replicated measurements will be estimated by the disp function.
These dispersions will be stored as a data.frame in the feature metadata that can be accessed with
fData(.)$disp. Similarly, the number of missing values that were present when average (and
dispersion) were computed are available in fData(.)$disp.

Currently, the feature metadata of the returned object corresponds the the feature metadata of the
first object in the list (augmented with the missing value and dispersion values); the metadata of the
features that were missing in this first input are missing (i.e. populated with NAs). This may change
in the future.

Value

A new average MSnSet.

Author(s)

Laurent Gatto

See Also

compfnames to compare MSnSet feature names.

10 bin-methods

Examples

library("pRolocdata")
3 replicates from Tan et al. 2009
data(tan2009r1)
data(tan2009r2)
data(tan2009r3)
x <- MSnSetList(list(tan2009r1, tan2009r2, tan2009r3))
avg <- averageMSnSet(x)
dim(avg)
head(exprs(avg))
head(fData(avg)$nNA)
head(fData(avg)$disp)
using the standard deviation as measure of dispersion
avg2 <-averageMSnSet(x, disp = sd)
head(fData(avg2)$disp)
keep only complete observations, i.e proteins
that had 0 missing values for all samples
sel <- apply(fData(avg)$nNA, 1 , function(x) all(x == 0))
avg <- avg[sel,]
disp <- rowMax(fData(avg)$disp)
library("pRoloc")
setStockcol(paste0(getStockcol(), "AA"))
plot2D(avg, cex = 7.7 * disp)
title(main = paste("Dispersion: non-parametric CV",

paste(round(range(disp), 3), collapse = " - ")))

bin-methods Bin ’MSnExp’ or ’Spectrum’ instances

Description

This method aggregates individual spectra (Spectrum instances) or whole experiments (MSnExp
instances) into discrete bins. All intensity values which belong to the same bin are summed together.

Methods

signature(object = "MSnExp", binSize = "numeric", verbose = "logical") Bins all spectra
in an MSnExp object. Use binSize to control the size of a bin (in Dalton, default is 1). Displays
a control bar if verbose set to TRUE (default). Returns a binned MSnExp instance.

signature(object = "Spectrum", binSize = "numeric", breaks = "numeric", msLevel. = "numeric")
Bin the Spectrum object. Use binSize to control the size of a bin (in Dalton, default is 1).
Similar to hist you could use breaks to specify the breakpoints between m/z bins. msLevel.
defines the level of the spectrum, and if msLevel(object) != msLevel., cleaning is ignored.
Only relevant when called from OnDiskMSnExp and is only relevant for developers.
Returns a binned Spectrum instance.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

calculateFragments-methods 11

Examples

s <- new("Spectrum2", mz=1:10, intensity=1:10)
intensity(s)
intensity(bin(s, binSize=2))

data(itraqdata)
sum(peaksCount(itraqdata))
itraqdata2 <- bin(itraqdata, binSize=2)
sum(peaksCount(itraqdata2))
processingData(itraqdata2)

calculateFragments-methods

Calculate ions produced by fragmentation.

Description

These method calculates a-, b-, c-, x-, y- and z-ions produced by fragmentation.

Arguments

sequence character, peptide sequence.

object Object of class "Spectrum2" or "missing" .

tolerance numeric tolerance between the theoretical and measured MZ values (only avail-
able if object is not missing).

method method used for for duplicated matches. Choose "highest" or "closest" to
select the peak with the highest intensity respectively the closest MZ in the tol-
erance range. If "all" is given all possible matches in the tolerance range are
reported (only available if object is not missing).

type character vector of target ions; possible values: c("a", "b", "c", "x", "y",
"z"); default: type=c("b", "y").

z numeric desired charge state; default z=1.

modifications named numeric vector of used modifications. The name must correspond to the
one-letter-code of the modified amino acid and the numeric value must repre-
sent the mass that should be added to the original amino accid mass, default:
Carbamidomethyl modifications=c(C=57.02146). Use Nterm or Cterm as
names for modifications that should be added to the amino respectively carboxyl-
terminus.

neutralLoss list, it has to have two named elments, namely water and ammonia that contain
a character vector which type of neutral loss should be calculated. Currently
neutral loss on the C terminal "Cterm", at the amino acids c("D", "E", "S",
"T") for "water" (shown with an _) and c("K", "N", "Q", "R") for "ammonia"
(shown with an *) are supported.
There is a helper function defaultNeutralLoss that returns the correct list. It
has two arguments disableWaterLoss and disableAmmoniaLoss to remove
single neutral loss options. See the example section for use cases.

verbose logical if TRUE (default) the used modifications are printed.

12 calculateFragments-methods

Methods

signature(sequence = "character", object = "missing", ...) Calculates the theoretical frag-
ments for a peptide sequence. Returns a data.frame with the columns c("mz", "ion",
"type", "pos", "z", "seq").

signature(sequence = "character", object = "Spectrum2", ...) Calculates and matches the
theoretical fragments for a peptide sequence and a "Spectrum2" object. The ... argu-
ments are passed to the internal functions. Currently tolerance, method and relative are
supported.
You could change the tolerance (default 0.1) and decide whether this tolerance should be
applied relative to the target m/z (relative = TRUE) or absolute (default relative = FALSE)
to match the theoretical fragment MZ with the MZ of the spectrum. When (relative = TRUE)
the mass tolerance window is set to target mz +/- (target mz * tolerance) and target
mz +/- tolerance otherwise. In cases of multiple matches use method to select the peak
with the highest intensity (method = "highest", default) respectively closest MZ (method =
"closes"). If method = "all" is set all possible matches in the current tolerance range are
reported. Returns the same data.frame as above but the mz column represents the matched
MZ values of the spectrum. Additionally there is a column error that contains the difference
between the observed MZ (from the spectrum) to the theoretical fragment MZ.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

Examples

find path to a mzXML file
file <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "mzXML$")

create basic MSnExp
msexp <- readMSData(file, centroided = FALSE)

centroid them
msexp <- pickPeaks(msexp)

calculate fragments for ACE with default modification
calculateFragments("ACE", modifications=c(C=57.02146))

calculate fragments for ACE with an addition N-terminal modification
calculateFragments("ACE", modifications=c(C=57.02146, Nterm=229.1629))

calculate fragments for ACE without any modifications
calculateFragments("ACE", modifications=NULL)

calculateFragments("VESITARHGEVLQLRPK",
type=c("a", "b", "c", "x", "y", "z"),
z=1:2)

calculateFragments("VESITARHGEVLQLRPK", msexp[[1]])

neutral loss
PSMatch::defaultNeutralLoss()

disable water loss on the C terminal

Chromatogram 13

PSMatch::defaultNeutralLoss(disableWaterLoss="Cterm")

real example
calculateFragments("PQR")
calculateFragments("PQR",

neutralLoss=PSMatch::defaultNeutralLoss(disableWaterLoss="Cterm"))
calculateFragments("PQR",

neutralLoss=PSMatch::defaultNeutralLoss(disableAmmoniaLoss="Q"))

disable neutral loss completely
calculateFragments("PQR", neutralLoss=NULL)

Chromatogram Representation of chromatographic MS data

Description

The Chromatogram class is designed to store chromatographic MS data, i.e. pairs of retention time
and intensity values. Instances of the class can be created with the Chromatogram constructor func-
tion but in most cases the dedicated methods for OnDiskMSnExp and MSnExp objects extracting
chromatograms should be used instead (i.e. the chromatogram() method).

Usage

Chromatogram(
rtime = numeric(),
intensity = numeric(),
mz = c(NA_real_, NA_real_),
filterMz = c(NA_real_, NA_real_),
precursorMz = c(NA_real_, NA_real_),
productMz = c(NA_real_, NA_real_),
fromFile = integer(),
aggregationFun = character(),
msLevel = 1L

)

aggregationFun(object)

S4 method for signature 'Chromatogram'
show(object)

S4 method for signature 'Chromatogram'
rtime(object)

S4 method for signature 'Chromatogram'
intensity(object)

S4 method for signature 'Chromatogram'
mz(object, filter = FALSE)

S4 method for signature 'Chromatogram'
precursorMz(object)

14 Chromatogram

S4 method for signature 'Chromatogram'
fromFile(object)

S4 method for signature 'Chromatogram'
length(x)

S4 method for signature 'Chromatogram'
as.data.frame(x)

S4 method for signature 'Chromatogram'
filterRt(object, rt)

S4 method for signature 'Chromatogram'
clean(object, all = FALSE, na.rm = FALSE)

S4 method for signature 'Chromatogram,ANY'
plot(
x,
col = "#00000060",
lty = 1,
type = "l",
xlab = "retention time",
ylab = "intensity",
main = NULL,
...

)

S4 method for signature 'Chromatogram'
msLevel(object)

S4 method for signature 'Chromatogram'
isEmpty(x)

S4 method for signature 'Chromatogram'
productMz(object)

S4 method for signature 'Chromatogram'
bin(
x,
binSize = 0.5,
breaks = seq(floor(min(rtime(x))), ceiling(max(rtime(x))), by = binSize),
fun = max

)

S4 method for signature 'Chromatogram'
normalize(object, method = c("max", "sum"))

S4 method for signature 'Chromatogram'
filterIntensity(object, intensity = 0, ...)

S4 method for signature 'Chromatogram,Chromatogram'

Chromatogram 15

alignRt(x, y, method = c("closest", "approx"), ...)

S4 method for signature 'Chromatogram,Chromatogram'
compareChromatograms(
x,
y,
ALIGNFUN = alignRt,
ALIGNFUNARGS = list(),
FUN = cor,
FUNARGS = list(use = "pairwise.complete.obs"),
...

)

S4 method for signature 'Chromatogram'
transformIntensity(object, FUN = identity)

Arguments

rtime for Chromatogram: numeric with the retention times (length has to be equal to
the length of intensity).

intensity for Chromatogram: numeric with the intensity values (length has to be equal to
the length of rtime). For filterIntensity: numeric(1) or function to use
to filter intensities. See description for details.

mz for Chromatogram: numeric(2) representing the mz value range (min, max) on
which the chromatogram was created. This is supposed to contain the real range
of mz values in contrast to filterMz. If not applicable use mzrange = c(0, 0).

filterMz for Chromatogram: numeric(2) representing the mz value range (min, max)
that was used to filter the original object on m/z dimension. If not applicable use
filterMz = c(0, 0).

precursorMz for Chromatogram: numeric(2) for SRM/MRM transitions. Represents the mz
of the precursor ion. See details for more information.

productMz for Chromatogram: numeric(2) for SRM/MRM transitions. Represents the mz
of the product. See details for more information.

fromFile for Chromatogram: integer(1) the index of the file within the OnDiskMSnExp
or MSnExp from which the chromatogram was extracted.

aggregationFun for Chromatogram: character string specifying the function that was used to
aggregate intensity values for the same retention time across the mz range. Sup-
ported are "sum" (total ion chromatogram), "max" (base peak chromatogram),
"min" and "mean".

msLevel for Chromatogram: integer(1) with the MS level from which the chromatogram
was extracted.

object Chromatogram object.

filter for mz: logical(1) defining whether the m/z range to filter the originating ob-
ject (e.g. MSnExp object) should be returned or the m/z range of the actual data.
Defaults to filter = FALSE.

x Chromatogram object.

rt for filterRt: numeric(2) defining the lower and upper retention time to which
the Chromatogram should be subsetted.

16 Chromatogram

all for clean: logical(1) whether all 0 intensities should be removed. Defaults
to all = FALSE. See clean() for details.

na.rm for clean: if all NA intensities should be removed before cleaning the Chromatogram.
Defaults to clean = FALSE.

col for plot: the color to be used for plotting.

lty for plot: the line type. See help page of plot in the graphics package for
details.

type for plot: the type of plot. See help page of plot in the graphics package for
details.

xlab for plot: the x-axis label.

ylab for plot: the y-axis label.

main for plot: the plot title. If not provided the mz range will be used as plot title.

... for plot: additional arguments to be passed to the base plot function. For
filterIntensity: additional parameters passed along to the function provided
with intensity. For compareChromatograms: ignored

binSize for bin: numeric(1) with the size of the bins (in seconds). Defaults to binSize
= 0.5.

breaks for bin: numeric defining the bins. Usually not required as the function calcu-
lates the bins automatically based on binSize.

fun for bin: function to be used to aggregate the intensity values falling within each
bin. Defaults to fun = max.

method character(1). For normalise: defining whether each chromatogram should
be normalized to its maximum signal (method = "max") or total signal (method
= "sum"). For alignRt: aligning approach that should be used (see description).
Defaults to method = "closest".

y for alignRt: Chromatogram against which x should be aligned against.

ALIGNFUN for compareChromatograms: function to align chromatogram x against chro-
matogram y. Defaults to alignRt.

ALIGNFUNARGS list of parameters to be passed to ALIGNFUN.

FUN for compareChromatograms: function to calculate a similarity score on the in-
tensity values of the compared and aligned chromatograms. Defaults to FUN =
cor. For transformIntensity: function to transform chromatograms’ inten-
sity values. Defaults to FUN = identity.

FUNARGS for compareChromatograms: list with additional parameters for FUN. Defaults
to FUNARGS = list(use = "pairwise.complete.obs").

Details

The mz, filterMz, precursorMz and productMz are stored as a numeric(2) representing a range
even if the chromatogram was generated for only a single ion (i.e. a single mz value). Using
ranges for mz values allow this class to be used also for e.g. total ion chromatograms or base peak
chromatograms.

The slots `precursorMz` and `productMz` allow to represent SRM
(single reaction monitoring) and MRM (multiple SRM) chromatograms. As
example, a `Chromatogram` for a SRM transition 273 -> 153 will have
a `@precursorMz = c(273, 273)` and a
`@productMz = c(153, 153)`.

Chromatogram 17

Object creation

Chromatogram objects can be extracted from an MSnExp or OnDiskMSnExp object with the chromatogram()
function.

Alternatively, the constructor function Chromatogram can be used, which takes arguments rtime,
intensity, mz, filterMz, precursorMz, productMz, fromFile, aggregationFun and msLevel.

Data access and coercion

• aggregationFun: gets the aggregation function used to create the Chromatogram.

• as.data.frame: returns a data.frame with columns "rtime" and "intensity".

• fromFile: returns an integer(1) with the index of the originating file.

• intensity: returns the intensities from the Chromatogram.

• isEmpty: returns TRUE if the chromatogram is empty or has only NA intensities.

• length: returns the length (i.e. number of data points) of the Chromatogram.

• msLevel: returns an integer(1) with the MS level of the chromatogram.

• mz: get the m/z (range) from the Chromatogram. The function returns a numeric(2) with the
lower and upper boundaries. Parameter filter allows to specify whether the m/z range used
to filter the originating object should be returned or the m/z range of the actual data.

• precursorMz: get the m/z of the precursor ion. The function returns a numeric(2) with the
lower and upper boundary.

• productMz: get the m/z of the producto chromatogram/ion. The function returns a numeric(2)
with the lower and upper m/z value.

• rtime: returns the retention times from the Chromatogram.

Data subsetting and filtering

• filterRt: filter/subset the Chromatogram to the specified retention time range (defined with
parameter rt).

• filterIntensity: filter a Chromatogram() object removing data points with intensities be-
low a user provided threshold. If intensity is a numeric value, the returned chromatogram
will only contain data points with intensities > intensity. In addition it is possible to provide
a function to perform the filtering. This function is expected to take the input Chromatogram
(object) and to return a logical vector with the same length then there are data points in
object with TRUE for data points that should be kept and FALSE for data points that should be
removed. See examples below.

Data processing and manipulation

• alignRt: Aligns chromatogram x against chromatogram y. The resulting chromatogram has
the same length (number of data points) than y and the same retention times thus allowing to
perform any pair-wise comparisons between the chromatograms. If x is a MChromatograms()
object, each Chromatogram in it is aligned against y. Additional parameters (...) are passed
along to the alignment functions (e.g. closest()).
Parameter method allows to specify which alignment method should be used. Currently there
are the following options:

– method = "closest" (the default): match data points in the first chromatogram (x) to
those of the second (y) based on the difference between their retention times: each data
point in x is assigned to the data point in y with the smallest difference in their retention

18 Chromatogram

times if their difference is smaller than the minimum average difference between retention
times in x or y (parameter tolerance for the call to the closest() function). By setting
tolerance = 0 only exact retention times are matched against each other (i.e. only values
are kept with exactly the same retention times between both chromatograms).

– method = "approx": uses the base R approx function to approximate intensities in x to
the retention times in y (using linear interpolation). This should only be used for chro-
matograms that were measured in the same measurement run (e.g. MS1 and correspond-
ing MS2 chromatograms from SWATH experiments).

• bin: aggregates intensity values from a chromatogram in discrete bins along the retention time
axis and returns a Chromatogram object with the retention time representing the mid-point of
the bins and the intensity the binned signal. Parameters binSize and breaks allow to define
the binning, fun the function which should be used to aggregate the intensities within a bin.

• compareChromatograms: calculates a similarity score between 2 chromatograms after align-
ing them. Parameter ALIGNFUN allows to define a function that can be used to align x against
y (defaults to ALIGNFUN = alignRt). Subsequently, the similarity is calculated on the aligned
intensities with the function provided with parameter FUN which defaults to cor (hence by
default the Pearson correlation is calculated between the aligned intensities of the two com-
pared chromatograms). Additional parameters can be passed to the ALIGNFUN and FUN with
the parameter ALIGNFUNARGS and FUNARGS, respectively.

• clean: removes 0-intensity data points (and NA values). See clean() for details.

• normalize, normalise: normalises the intensities of a chromatogram by dividing them ei-
ther by the maximum intensity (method = "max") or total intensity (method = "sum") of the
chromatogram.

• transformIntensity: allows to manipulate the intensity values of a chromatogram using a
user provided function. See below for examples.

Data visualization

• plot: plots a Chromatogram object.

Author(s)

Johannes Rainer

See Also

MChromatograms for combining Chromatogram in a two-dimensional matrix (rows being mz-rt
ranges, columns samples). chromatogram()] for the method to extract chromatogram data from an MSnExporOnDiskMSnExpobject. [clean()] for the method to *clean* aChromatogram‘
object.

Examples

Create a simple Chromatogram object.
ints <- abs(rnorm(100, sd = 100))
rts <- seq_len(length(ints))
chr <- Chromatogram(rtime = rts, intensity = ints)
chr

Extract intensities
intensity(chr)

Extract retention times
rtime(chr)

Chromatogram 19

Extract the mz range - is NA for the present example
mz(chr)

plot the Chromatogram
plot(chr)

Create a simple Chromatogram object based on random values.
chr <- Chromatogram(intensity = abs(rnorm(1000, mean = 2000, sd = 200)),

rtime = sort(abs(rnorm(1000, mean = 10, sd = 5))))
chr

Get the intensities
head(intensity(chr))

Get the retention time
head(rtime(chr))

What is the retention time range of the object?
range(rtime(chr))

Filter the chromatogram to keep only values between 4 and 10 seconds
chr2 <- filterRt(chr, rt = c(4, 10))

range(rtime(chr2))

Data manipulations:

normalize a chromatogram
par(mfrow = c(1, 2))
plot(chr)
plot(normalize(chr, method = "max"))

Align chromatograms against each other

chr1 <- Chromatogram(rtime = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
intensity = c(3, 5, 14, 30, 24, 6, 2, 1, 1, 0))

chr2 <- Chromatogram(rtime = c(2.5, 3.42, 4.5, 5.43, 6.5),
intensity = c(5, 12, 15, 11, 5))

plot(chr1, col = "black")
points(rtime(chr2), intensity(chr2), col = "blue", type = "l")

Align chr2 to chr1 without interpolation
res <- alignRt(chr2, chr1)
rtime(res)
intensity(res)
points(rtime(res), intensity(res), col = "#00ff0080", type = "l")

Align chr2 to chr1 with interpolation
res <- alignRt(chr2, chr1, method = "approx")
points(rtime(res), intensity(res), col = "#ff000080", type = "l")
legend("topright", col = c("black", "blue", "#00ff0080","#ff000080"),lty = 1,

legend = c("chr1", "chr2", "chr2 matchRtime", "chr2 approx"))

Compare Chromatograms. Align chromatograms with `alignRt` and

20 chromatogram,MSnExp-method

method `"approx"`
compareChromatograms(chr2, chr1, ALIGNFUNARGS = list(method = "approx"))

Data filtering

chr1 <- Chromatogram(rtime = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
intensity = c(3, 5, 14, 30, 24, 6, 2, 1, 1, 0))

Remove data points with intensities below 10
res <- filterIntensity(chr1, 10)
intensity(res)

Remove data points with an intensity lower than 10% of the maximum
intensity in the Chromatogram
filt_fun <- function(x, prop = 0.1) {

x@intensity >= max(x@intensity, na.rm = TRUE) * prop
}
res <- filterIntensity(chr1, filt_fun)
intensity(res)

Remove data points with an intensity lower than half of the maximum
res <- filterIntensity(chr1, filt_fun, prop = 0.5)
intensity(res)

log2 transform intensity values
res <- transformIntensity(chr1, log2)
intensity(res)
log2(intensity(chr1))

chromatogram,MSnExp-method

Extract chromatogram object(s)

Description

The chromatogram method extracts chromatogram(s) from an MSnExp or OnDiskMSnExp object.
Depending on the provided parameters this can be a total ion chromatogram (TIC), a base peak
chromatogram (BPC) or an extracted ion chromatogram (XIC) extracted from each sample/file.

Usage

S4 method for signature 'MSnExp'
chromatogram(
object,
rt,
mz,
aggregationFun = "sum",
missing = NA_real_,
msLevel = 1L,
BPPARAM = bpparam()

)

chromatogram,MSnExp-method 21

Arguments

object For chromatogram: a MSnExp or OnDiskMSnExp object from which the chro-
matogram should be extracted.

rt A numeric(2) or two-column matrix defining the lower and upper boundary
for the retention time range/window(s) for the chromatogram(s). If a matrix is
provided, a chromatogram is extracted for each row. If not specified, a chro-
matogram representing the full retention time range is extracted. See examples
below for details.

mz A numeric(2) or two-column matrix defining the mass-to-charge (mz) range(s)
for the chromatogram(s). For each spectrum/retention time, all intensity val-
ues within this mz range are aggregated to result in the intensity value for the
spectrum/retention time. If not specified, the full mz range is considered. See
examples below for details.

aggregationFun character defining the function to be used for intensity value aggregation along
the mz dimension. Allowed values are "sum" (TIC), "max" (BPC), "min" and
"mean".

missing numeric(1) allowing to specify the intensity value for if for a given reten-
tion time (spectrum) no signal was measured within the mz range. Defaults
to NA_real_.

msLevel integer specifying the MS level from which the chromatogram should be ex-
tracted. Defaults to msLevel = 1L.

BPPARAM Parallelisation backend to be used, which will depend on the architecture. De-
fault is BiocParallel::bpparam().

Details

Arguments rt and mz allow to specify the MS data slice from which the chromatogram should be
extracted. The parameter aggregationSum allows to specify the function to be used to aggregate
the intensities across the mz range for the same retention time. Setting aggregationFun = "sum"
would e.g. allow to calculate the total ion chromatogram (TIC), aggregationFun = "max" the base
peak chromatogram (BPC). The length of the extracted Chromatogram object, i.e. the number of
available data points, corresponds to the number of scans/spectra measured in the specified retention
time range. If in a specific scan (for a give retention time) no signal was measured in the specified mz
range, a NA_real_ is reported as intensity for the retention time (see Notes for more information).
This can be changed using the missing parameter.

By default or if \code{mz} and/or \code{rt} are numeric vectors, the
function extracts one \code{\link{Chromatogram}} object for each file
in the \code{\linkS4class{MSnExp}} or \code{\linkS4class{OnDiskMSnExp}}
object. Providing a numeric matrix with argument \code{mz} or \code{rt}
enables to extract multiple chromatograms per file, one for each row in
the matrix. If the number of columns of \code{mz} or \code{rt} are not
equal to 2, \code{range} is called on each row of the matrix.

Value

chromatogram returns a MChromatograms object with the number of columns corresponding to
the number of files in object and number of rows the number of specified ranges (i.e. number
of rows of matrices provided with arguments mz and/or rt). The featureData of the returned
object contains columns "mzmin" and "mzmax" with the values from input argument mz (if used)
and "rtmin" and "rtmax" if the input argument rt was used.

22 chromatogram,MSnExp-method

Author(s)

Johannes Rainer

See Also

Chromatogram and MChromatograms for the classes that represent single and multiple chromatograms.

Examples

Read a test data file.
library(BiocParallel)
register(SerialParam())
library(msdata)
f <- c(system.file("microtofq/MM14.mzML", package = "msdata"),

system.file("microtofq/MM8.mzML", package = "msdata"))

Read the data as an MSnExp
msd <- readMSData(f, msLevel = 1)

Extract the total ion chromatogram for each file:
tic <- chromatogram(msd)

tic

Extract the TIC for the second file:
tic[1, 2]

Plot the TIC for the first file
plot(rtime(tic[1, 1]), intensity(tic[1, 1]), type = "l",

xlab = "rtime", ylab = "intensity", main = "TIC")

Extract chromatograms for a MS data slices defined by retention time
and mz ranges.
rtr <- rbind(c(10, 60), c(280, 300))
mzr <- rbind(c(140, 160), c(300, 320))
chrs <- chromatogram(msd, rt = rtr, mz = mzr)

Each row of the returned MChromatograms object corresponds to one mz-rt
range. The Chromatogram for the first range in the first file is empty,
because the retention time range is outside of the file's rt range:
chrs[1, 1]

The mz and/or rt ranges used are provided as featureData of the object
fData(chrs)

The mz method can be used to extract the m/z ranges directly
mz(chrs)

Also the Chromatogram for the second range in the second file is empty
chrs[2, 2]

Get the extracted chromatogram for the first range in the second file
chr <- chrs[1, 2]
chr

plot(rtime(chr), intensity(chr), xlab = "rtime", ylab = "intensity")

clean-methods 23

clean-methods Clean ’MSnExp’, ’Spectrum’ or ’Chromatogram’ instances

Description

This method cleans out individual spectra (Spectrum instances), chromatograms (Chromatogram
instances) or whole experiments (MSnExp instances) of 0-intensity peaks. Unless all is set to FALSE,
original 0-intensity values are retained only around peaks. If more than two 0’s were separating two
peaks, only the first and last ones, those directly adjacent to the peak ranges are kept. If two peaks
are separated by only one 0-intensity value, it is retained. An illustrative example is shown below.

Methods

signature(object = "MSnExp", all = "logical", verbose = "logical") Cleans all spectra in
MSnExp object. Displays a control bar if verbose set to TRUE (default). Returns a cleaned
MSnExp instance.

signature(object = "Spectrum", all = "logical", msLevel. = "numeric") Cleans the Spectrum
object. Returns a cleaned Spectrum instance. If all = TRUE, then all zeros are removed.
msLevel. defines the level of the spectrum, and if msLevel(object) != msLevel., cleaning
is ignored. Only relevant when called from OnDiskMSnExp and is only relevant for developers.

signature(object = "Chromatogram", all = "logical", na.rm = "logical") Cleans the Chromatogram
instance and returns a cleaned Chromatogram object. If na.rm is TRUE (default is FALSE) all
NA intensities are removed before cleaning the chromatogram.

Author(s)

Laurent Gatto

See Also

removePeaks and trimMz for other spectra processing methods.

Examples

int <- c(1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0)
sp1 <- new("Spectrum2",

intensity=int,
mz=1:length(int))

sp2 <- clean(sp1) ## default is all=FALSE
intensity(sp1)
intensity(sp2)
intensity(clean(sp1, all = TRUE))

mz(sp1)
mz(sp2)
mz(clean(sp1, all = TRUE))

data(itraqdata)
itraqdata2 <- clean(itraqdata)
sum(peaksCount(itraqdata))
sum(peaksCount(itraqdata2))
processingData(itraqdata2)

24 combineFeatures

Create a simple Chromatogram object
chr <- Chromatogram(rtime = 1:12,

intensity = c(0, 0, 20, 0, 0, 0, 123, 124343, 3432, 0, 0, 0))

Remove 0-intensity values keeping those adjacent to peaks
chr <- clean(chr)
intensity(chr)

Remove all 0-intensity values
chr <- clean(chr, all = TRUE)
intensity(chr)

Clean a Chromatogram with NAs.
chr <- Chromatogram(rtime = 1:12,

intensity = c(0, 0, 20, NA, NA, 0, 123, 124343, 3432, 0, 0, 0))
chr <- clean(chr, all = FALSE, na.rm = TRUE)
intensity(chr)

combineFeatures Combines features in an MSnSet object

Description

This function combines the features in an "MSnSet" instance applying a summarisation function
(see fun argument) to sets of features as defined by a factor (see fcol argument). Note that the
feature names are automatically updated based on the groupBy parameter.

The coefficient of variations are automatically computed and collated to the featureData slot. See
cv and cv.norm arguments for details.

If NA values are present, a message will be shown. Details on how missing value impact on the
data aggregation are provided below.

Arguments

object An instance of class "MSnSet" whose features will be summerised.

groupBy A factor, character, numeric or a list of the above defining how to sum-
merise the features. The list must be of length nrow(object). Each element
of the list is a vector describing the feature mapping. If the list can be named,
its names must match fetureNames(object). See redundancy.handler for
details about the latter.

fun Deprecated; use method instead.

method The summerising function. Currently, mean, median, weighted mean, sum, me-
dian polish, robust summarisation (using MASS::rlm, implemented in MsCoreUtils::robustSummary()),
iPQF (see iPQF for details) and NTR (see NTR for details) are implemented, but
user-defined functions can also be supplied. Note that the robust menthods as-
sumes that the data are already log-transformed.

fcol Feature meta-data label (fData column name) defining how to summerise the
features. It must be present in fvarLabels(object) and, if present, will be
used to defined groupBy as fData(object)[, fcol]. Note that fcol is ignored
if groupBy is present.

combineFeatures 25

redundancy.handler

If groupBy is a list, one of "unique" (default) or "multiple" (ignored other-
wise) defining how to handle peptides that can be associated to multiple higher-
level features (proteins) upon combination. Using "unique" will only consider
uniquely matching features (features matching multiple proteins will be dis-
carded). "multiple" will allow matching to multiple proteins and each feature
will be repeatedly tallied for each possible matching protein.

cv A logical defining if feature coefficients of variation should be computed and
stored as feature meta-data. Default is TRUE.

cv.norm A character defining how to normalise the feature intensitites prior to CV cal-
culation. Default is sum. Use none to keep intensities as is. See featureCV for
more details.

verbose A logical indicating whether verbose output is to be printed out.

... Additional arguments for the fun function.

Details

Missing values have different effect based on the aggregation method employed, as detailed below.
See also examples below.

1. When using either "sum", "mean", "weighted.mean" or "median", any missing value will be
propagated at the higher level. If na.rm = TRUE is used, then the missing value will be ignored.

2. Missing values will result in an error when using "medpolish", unless na.rm = TRUE is used.

3. When using robust summarisation ("robust"), individual missing values are excluded prior
to fitting the linear model by robust regression. To remove all values in the feature containing
the missing values, use filterNA.

4. The "iPQF" method will fail with an error if missing value are present, which will have to be
handled explicitly. See below.

More generally, missing values often need dedicated handling such as filtering (see filterNA) or
imputation (see impute).

Value

A new "MSnSet" instance is returned with ncol (i.e. number of samples) is unchanged, but nrow
(i.e. the number od features) is now equals to the number of levels in groupBy. The feature metadata
(featureData slot) is updated accordingly and only the first occurrence of a feature in the original
feature meta-data is kept.

Author(s)

Laurent Gatto with contributions from Martina Fischer for iPQF and Ludger Goeminne, Adriaan
Sticker and Lieven Clement for robust.

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

26 combineFeatures

See Also

featureCV to calculate coefficient of variation, nFeatures to document the number of features per
group in the feature data, and the aggvar to explore variability within protein groups.

iPQF for iPQF summarisation.

NTR for normalisation to reference summarisation.

Examples

data(msnset)
msnset <- msnset[11:15,]
exprs(msnset)

arbitrary grouping into two groups
grp <- as.factor(c(1, 1, 2, 2, 2))
msnset.comb <- combineFeatures(msnset, groupBy = grp, method = "sum")
dim(msnset.comb)
exprs(msnset.comb)
fvarLabels(msnset.comb)

grouping with a list
grpl <- list(c("A", "B"), "A", "A", "C", c("C", "B"))
optional naming
names(grpl) <- featureNames(msnset)
exprs(combineFeatures(msnset, groupBy = grpl, method = "sum", redundancy.handler = "unique"))
exprs(combineFeatures(msnset, groupBy = grpl, method = "sum", redundancy.handler = "multiple"))

missing data
exprs(msnset)[4, 4] <-

exprs(msnset)[2, 2] <- NA
exprs(msnset)
NAs propagate in the 115 and 117 channels
exprs(combineFeatures(msnset, grp, "sum"))
NAs are removed before summing
exprs(combineFeatures(msnset, grp, "sum", na.rm = TRUE))

using iPQF
data(msnset2)
anyNA(msnset2)
res <- combineFeatures(msnset2,

groupBy = fData(msnset2)$accession,
redundancy.handler = "unique",
method = "iPQF",
low.support.filter = FALSE,
ratio.calc = "sum",
method.combine = FALSE)

head(exprs(res))

using robust summarisation
data(msnset) ## reset data
msnset <- log(msnset, 2) ## log2 transform

Feature X46, in the ENO protein has one missig value
which(is.na(msnset), arr.ind = TRUE)
exprs(msnset["X46",])
Only the missing value in X46 and iTRAQ4.116 will be ignored
res <- combineFeatures(msnset,

combineSpectra,MSnExp-method 27

fcol = "ProteinAccession",
method = "robust")

tail(exprs(res))

msnset2 <- filterNA(msnset) ## remove features with missing value(s)
res2 <- combineFeatures(msnset2,

fcol = "ProteinAccession",
method = "robust")

Here, the values for ENO are different because the whole feature
X46 that contained the missing value was removed prior to fitting.
tail(exprs(res2))

combineSpectra,MSnExp-method

Combine Spectra

Description

combineSpectra combines spectra in a MSnExp, OnDiskMSnExp or MSpectra object applying the
summarization function fun to sets of spectra defined by a factor (fcol parameter). The resulting
combined spectrum for each set contains metadata information (present in mcols and all spectrum
information other than mz and intensity) from the first spectrum in each set.

Combining of spectra for MSnExp or OnDiskMSnExp objects is performed by default for each file
separately, combining of spectra across files is thus not possible. See examples for details.

Usage

S4 method for signature 'MSnExp'
combineSpectra(
object,
fcol = "fileIdx",
method = meanMzInts,
...,
BPPARAM = bpparam()

)

S4 method for signature 'MSpectra'
combineSpectra(object, fcol, method = meanMzInts, fun, ...)

Arguments

object A MSnExp or MSpectra

fcol For MSpectra objects: mcols column name to be used to define the sets of
spectra to be combined. If missing, all spectra are considered to be one set.
For MSnExp/OnDiskMSnExp objects: column in fData(object) defining which
spectra to combine. See examples below for more details.

method function to be used to combine the spectra by fcol. Has to be a function that
takes a list of spectra as input and returns a single Spectrum. See meanMzInts()
for details.

... additional arguments for fun.

28 combineSpectra,MSnExp-method

BPPARAM For MSnExp/OnDiskMSnExp objects: parallel processing setup to perform per-file
parallel spectra combining. See bpparam() for more details.

fun Deprecated use method instead.

Value

A MSpectra or MSnExp object with combined spectra. Metadata (mcols) and all spectrum attributes
other than mz and intensity are taken from the first Spectrum in each set.

Author(s)

Johannes Rainer, Laurent Gatto

See Also

meanMzInts() for a function to combine spectra.

Examples

set.seed(123)
mzs <- seq(1, 20, 0.1)
ints1 <- abs(rnorm(length(mzs), 10))
ints1[11:20] <- c(15, 30, 90, 200, 500, 300, 100, 70, 40, 20) # add peak
ints2 <- abs(rnorm(length(mzs), 10))
ints2[11:20] <- c(15, 30, 60, 120, 300, 200, 90, 60, 30, 23)
ints3 <- abs(rnorm(length(mzs), 10))
ints3[11:20] <- c(13, 20, 50, 100, 200, 100, 80, 40, 30, 20)

Create the spectra.
sp1 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),

intensity = ints1, rt = 1)
sp2 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),

intensity = ints2, rt = 2)
sp3 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.009),

intensity = ints3, rt = 3)

spctra <- MSpectra(sp1, sp2, sp3,
elementMetadata = DataFrame(idx = 1:3, group = c("b", "a", "a")))

Combine the spectra reporting the maximym signal
res <- combineSpectra(spctra, mzd = 0.05, intensityFun = max)
res

All values other than m/z and intensity are kept from the first spectrum
rtime(res)

Plot the individual and the merged spectrum
par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")
points(mz(sp2), intensity(sp2), type = "h", col = "green")
points(mz(sp3), intensity(sp3), type = "h", col = "blue")
plot(mz(res[[1]]), intensity(res[[1]]), type = "h",

col = "black", xlim = range(mzs[5:25]))

Combine spectra in two sets.
res <- combineSpectra(spctra, fcol = "group", mzd = 0.05)

combineSpectraMovingWindow 29

res

rtime(res)

Plot the individual and the merged spectra
par(mfrow = c(3, 1), mar = c(4.3, 4, 1, 1))
plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")
points(mz(sp2), intensity(sp2), type = "h", col = "green")
points(mz(sp3), intensity(sp3), type = "h", col = "blue")
plot(mz(res[[1]]), intensity(res[[1]]), xlim = range(mzs[5:25]), type = "h",

col = "black")
plot(mz(res[[2]]), intensity(res[[2]]), xlim = range(mzs[5:25]), type = "h",

col = "black")

Combining spectra of an MSnExp/OnDiskMSnExp objects
Reading data from 2 mzML files
sciex <- readMSData(dir(system.file("sciex", package = "msdata"),

full.names = TRUE), mode = "onDisk")

Filter the file to a retention time range from 2 to 20 seconds (to reduce
execution time of the example)
sciex <- filterRt(sciex, rt = c(2, 20))
table(fromFile(sciex))

We have thus 64 spectra per file.

In the example below we combine spectra measured in one second to a
single spectrum. We thus first define the grouping variable and add that
to the `fData` of the object. For combining, we use the
`consensusSpectrum` function that combines the spectra keeping only peaks
that were found in 50% of the spectra; by defining `mzd = 0.01` all peaks
within an m/z of 0.01 are evaluated for combining.
seconds <- round(rtime(sciex))
head(seconds)
fData(sciex)$second <- seconds

res <- combineSpectra(sciex, fcol = "second", mzd = 0.01, minProp = 0.1,
method = consensusSpectrum)

table(fromFile(res))

The data was reduced to 19 spectra for each file.

combineSpectraMovingWindow

Combine signal from consecutive spectra of LCMS experiments

Description

combineSpectraMovingWindow combines signal from consecutive spectra within a file. The result-
ing MSnExp has the same total number of spectra than the original object, but with each individual’s
spectrum information representing aggregated data from the original spectrum and its neighboring
spectra. This is thus equivalent with a smoothing of the data in retention time dimension.

Note that the function returns always a MSnExp object, even if x was an OnDiskMSnExp object.

30 combineSpectraMovingWindow

Usage

combineSpectraMovingWindow(
x,
halfWindowSize = 1L,
intensityFun = base::mean,
mzd = NULL,
timeDomain = FALSE,
weighted = FALSE,
ppm = 0,
BPPARAM = bpparam()

)

Arguments

x MSnExp or OnDiskMSnExp object.

halfWindowSize integer(1) with the half window size for the moving window.

intensityFun function to aggregate the intensity values per m/z group. Should be a function
or the name of a function. The function is expected to return a numeric(1).

mzd numeric(1) defining the maximal m/z difference below which mass peaks are
considered to represent the same ion/mass peak. Intensity values for such grouped
mass peaks are aggregated. If not specified this value is estimated from the dis-
tribution of differences of m/z values from the provided spectra (see details).

timeDomain logical(1) whether definition of the m/z values to be combined into one m/z is
performed on m/z values (timeDomain = FALSE) or on sqrt(mz) (timeDomain
= TRUE). Profile data from TOF MS instruments should be aggregated based
on the time domain (see details). Note that a pre-defined mzd should also be
estimated on the square root of m/z values if timeDomain = TRUE.

weighted logical(1) whether m/z values per m/z group should be aggregated with an
intensity-weighted mean. The default is to report the mean m/z.

ppm numeric(1) to define an m/z relative deviation. Note that if only ppm should be
considered but not mzd, mzd should be set to 0 (i.e. mzd = 0). This parameter is
directly passed to meanMzInts().

BPPARAM parallel processing settings.

Details

The method assumes same ions being measured in consecutive scans (i.e. LCMS data) and thus
combines their signal which can increase the increase the signal to noise ratio.

Intensities (and m/z values) for signals with the same m/z value in consecutive scans are aggregated
using the intensityFun. m/z values of intensities from consecutive scans will never be exactly
identical, even if they represent signal from the same ion. The function determines thus internally
a similarity threshold based on differences between m/z values within and between spectra below
which m/z values are considered to derive from the same ion. For robustness reasons, this threshold
is estimated on the 100 spectra with the largest number of m/z - intensity pairs (i.e. mass peaks).

See meanMzInts() for details.

Parameter timeDomain: by default, m/z-intensity pairs from consecutive scans to be aggregated are
defined based on the square root of the m/z values. This is because it is highly likely that in all QTOF
MS instruments data is collected based on a timing circuit (with a certain variance) and m/z values
are later derived based on the relationship t = k * sqrt(m/z). Differences between individual m/z

combineSpectraMovingWindow 31

values will thus be dependent on the actual m/z value causing both the difference between m/z
values and their scattering being different in the lower and upper m/z range. Determining m/z values
to be combined on the sqrt(mz) reduces this dependency. For non-QTOF MS data timeDomain =
FALSE might be used instead.

Value

MSnExp with the same number of spectra than x.

Note

The function has to read all data into memory for the spectra combining and thus the memory
requirements of this function are high, possibly preventing its usage on large experimental data. In
these cases it is suggested to perform the combination on a per-file basis and save the results using
the writeMSData() function afterwards.

Author(s)

Johannes Rainer, Sigurdur Smarason

See Also

meanMzInts() for the function combining spectra provided in a list.

estimateMzScattering() for a function to estimate m/z value scattering in consecutive spectra.

Examples

library(MSnbase)
library(msdata)

Read a profile-mode LC-MS data file.
fl <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)[1]
od <- readMSData(fl, mode = "onDisk")

Subset the object to the retention time range that includes the signal
for proline. This is done for performance reasons.
rtr <- c(165, 175)
od <- filterRt(od, rtr)

Combine signal from neighboring spectra.
od_comb <- combineSpectraMovingWindow(od)

The combined spectra have the same number of spectra, same number of
mass peaks per spectra, but the signal is larger in the combined object.
length(od)
length(od_comb)

peaksCount(od)
peaksCount(od_comb)

Comparing the chromatographic signal for proline (m/z ~ 116.0706)
before and after spectra data combination.
mzr <- c(116.065, 116.075)
chr <- chromatogram(od, rt = rtr, mz = mzr)
chr_comb <- chromatogram(od_comb, rt = rtr, mz = mzr)

32 commonFeatureNames

par(mfrow = c(1, 2))
plot(chr)
plot(chr_comb)
Chromatographic data is "smoother" after combining.

commonFeatureNames Keep only common feature names

Description

Subsets MSnSet instances to their common feature names.

Usage

commonFeatureNames(x, y)

Arguments

x An instance of class MSnSet or a list or MSnSetList with at least 2 MSnSet
objects.

y An instance of class MSnSet. Ignored if x is a list/MSnSetList.

Value

An linkS4class{MSnSetList} composed of the input MSnSet containing only common features
in the same order. The names of the output are either the names of the x and y input variables or the
names of x if a list is provided.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(tan2009r1)
data(tan2009r2)
cmn <- commonFeatureNames(tan2009r1, tan2009r2)
names(cmn)
as a named list
names(commonFeatureNames(list(a = tan2009r1, b = tan2009r2)))
without message
suppressMessages(cmn <- commonFeatureNames(tan2009r1, tan2009r2))
more than 2 instance
data(tan2009r3)
cmn <- commonFeatureNames(list(tan2009r1, tan2009r2, tan2009r3))
length(cmn)

compareMSnSets 33

compareMSnSets Compare two MSnSets

Description

Compares two MSnSet instances. The qual and processingData slots are generally omitted.

Usage

compareMSnSets(x, y, qual = FALSE, proc = FALSE)

Arguments

x First MSnSet
y Second MSnSet
qual Should the qual slots be compared? Default is FALSE.
proc Should the processingData slots be compared? Default is FALSE.

Value

A logical

Author(s)

Laurent Gatto

compareSpectra-methods

Compare Spectra of an ’MSnExp’ or ’Spectrum’ instances

Description

This method compares spectra (Spectrum instances) pairwise or all spectra of an experiment (MSnExp
instances). Currently the comparison is based on the number of common peaks fun = "common", the
Pearson correlation fun = "cor", the dot product fun = "dotproduct" or a user-defined function.

For fun = "common" the tolerance (default 25e-6) can be set and the tolerance can be defined to
be relative (default relative = TRUE) or absolute (relative = FALSE). To compare spectra with
fun = "cor" and fun = "dotproduct", the spectra need to be binned. The binSize argument (in
Dalton) controls the binning precision. Please see bin for details.

Instead of these three predefined functions for fun a user-defined comparison function can be sup-
plied. This function takes two Spectrum objects as the first two arguments and ... as third argu-
ment. The function must return a single numeric value. See the example section.

Methods

signature(x = "MSnExp", y = "missing", fun = "character", ...) Compares all spectra in an
MSnExp object. The ... arguments are passed to the internal functions. Returns a matrix of
dimension length(x) by length(x).

signature(x = "Spectrum", y = "Spectrum", fun = "character", ...) Compares two Spectrum
objects. See the above explanation for fun and Returns a single numeric value.

34 consensusSpectrum

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

Stein, S. E., & Scott, D. R. (1994). Optimization and testing of mass spectral library search algo-
rithms for compound identification. Journal of the American Society for Mass Spectrometry, 5(9),
859-866. doi: https://doi.org/10.1016/1044-0305(94)87009-8

Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E. and Aebersold, R. (2007)
Development and validation of a spectral library searching method for peptide identification from
MS/MS. Proteomics, 7: 655-667. doi: https://doi.org/10.1002/pmic.200600625

See Also

bin, clean, pickPeaks, smooth, removePeaks and trimMz for other spectra processing methods.

Examples

s1 <- new("Spectrum2", mz=1:10, intensity=1:10)
s2 <- new("Spectrum2", mz=1:10, intensity=10:1)
compareSpectra(s1, s2)
compareSpectra(s1, s2, fun="cor", binSize=2)
compareSpectra(s1, s2, fun="dotproduct")

define our own (useless) comparison function (it is just a basic example)
equalLength <- function(x, y, ...) {

return(peaksCount(x)/(peaksCount(y)+.Machine$double.eps))
}
compareSpectra(s1, s2, fun=equalLength)
compareSpectra(s1, new("Spectrum2", mz=1:5, intensity=1:5), fun=equalLength)
compareSpectra(s1, new("Spectrum2"), fun=equalLength)

data(itraqdata)
compareSpectra(itraqdata[1:5], fun="cor")

consensusSpectrum Combine spectra to a consensus spectrum

Description

consensusSpectrum takes a list of spectra and combines them to a consensus spectrum containing
mass peaks that are present in a user definable proportion of spectra.

Usage

consensusSpectrum(
x,
mzd = 0,
minProp = 0.5,
intensityFun = stats::median,
mzFun = stats::median,
ppm = 0,

consensusSpectrum 35

weighted = FALSE,
...

)

Arguments

x list of Spectrum objects (either Spectrum1 or Spectrum2).

mzd numeric(1) defining the maximal m/z difference below which mass peaks are
grouped in to the same final mass peak (see details for more information). De-
faults to 0; see meanMzInts() for estimating this value from the distribution of
differences of m/z values from the spectra. See also parameter ppm below for
the definition of an m/z dependent peak grouping.

minProp numeric(1) defining the minimal proportion of spectra in which a mass peak
has to be present in order to include it in the final consensus spectrum. Should
be a number between 0 and 1 (present in all spectra).

intensityFun function (or name of a function) to be used to define the intensity of the aggre-
gated peak. By default the median signal for a mass peak is reported.

mzFun function (or name of a function) to be used to define the intensity of the aggre-
gated peak. By default the median m/z is reported. Note that setting weighted
= TRUE overrides this parameter.

ppm numeric(1) allowing to perform a m/z dependent grouping of mass peaks. See
details for more information.

weighted logical(1) whether the m/z of the aggregated peak represents the intensity-
weighted average of the m/z values of all peaks of the peak group. If FALSE (the
default), the m/z of the peak is calculated with mzFun.

... additional arguments to be passed to intensityFun.

Details

Peaks from spectra with a difference of their m/z being smaller than mzd are grouped into the same
final mass peak with their intensities being aggregated with intensityFun. Alternatively (or in
addition) it is possible to perform an m/z dependent grouping of mass peaks with parameter ppm:
mass peaks from different spectra with a difference in their m/z smaller than ppm of their m/z are
grouped into the same final peak.

The m/z of the final mass peaks is calculated with mzFun. By setting weighted = TRUE the parameter
mzFun is ignored and an intensity-weighted mean of the m/z values from the individual mass peaks
is returned as the peak’s m/z.

Author(s)

Johannes Rainer

See Also

Other spectra combination functions: meanMzInts()

Examples

library(MSnbase)
Create 3 example spectra.
sp1 <- new("Spectrum2", rt = 1, precursorMz = 1.41,

36 estimateMzResolution,MSnExp-method

mz = c(1.2, 1.5, 1.8, 3.6, 4.9, 5.0, 7.8, 8.4),
intensity = c(10, 3, 140, 14, 299, 12, 49, 20))

sp2 <- new("Spectrum2", rt = 1.1, precursorMz = 1.4102,
mz = c(1.4, 1.81, 2.4, 4.91, 6.0, 7.2, 9),
intensity = c(3, 184, 8, 156, 12, 23, 10))

sp3 <- new("Spectrum2", rt = 1.2, precursorMz = 1.409,
mz = c(1, 1.82, 2.2, 3, 7.0, 8),
intensity = c(8, 210, 7, 101, 17, 8))

spl <- MSpectra(sp1, sp2, sp3)

Plot the spectra, each in a different color
par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
plot(mz(sp1), intensity(sp1), type = "h", col = "#ff000080", lwd = 2,

xlab = "m/z", ylab = "intensity", xlim = range(mz(spl)),
ylim = range(intensity(spl)))

points(mz(sp2), intensity(sp2), type = "h", col = "#00ff0080", lwd = 2)
points(mz(sp3), intensity(sp3), type = "h", col = "#0000ff80", lwd = 2)

cons <- consensusSpectrum(spl, mzd = 0.02, minProp = 2/3)

Peaks of the consensus spectrum
mz(cons)
intensity(cons)

Other Spectrum data is taken from the first Spectrum in the list
rtime(cons)
precursorMz(cons)

plot(mz(cons), intensity(cons), type = "h", xlab = "m/z", ylab = "intensity",
xlim = range(mz(spl)), ylim = range(intensity(spl)), lwd = 2)

Deprecated MSnbase Deprecated and Defunct

Description

The function, class, or data object you have asked for has been deprecated or made defunct.

Deprecated:

Defunct: readMzXMLData, extractSpectra, writeMzTabData, makeMTD, makePEP, makePRT, NAnnotatedDataFrame
class.

estimateMzResolution,MSnExp-method

Estimate the m/z resolution of a spectrum

Description

estimateMzResolution estimates the m/z resolution of a profile-mode Spectrum (or of all spec-
tra in an MSnExp or OnDiskMSnExp object. The m/z resolution is defined as the most frequent
difference between a spectrum’s m/z values.

estimateMzResolution,MSnExp-method 37

Usage

S4 method for signature 'MSnExp'
estimateMzResolution(object, ...)

S4 method for signature 'Spectrum'
estimateMzResolution(object, ...)

Arguments

object either a Spectrum, MSnExp or OnDiskMSnExp object.

... currently not used.

Value

numeric(1) with the m/z resolution. If called on a MSnExp or OnDiskMSnExp a list of m/z resolu-
tions are returned (one for each spectrum).

Note

This assumes the data to be in profile mode and does not return meaningful results for centroided
data.

The estimated m/z resolution depends on the number of ions detected in a spectrum, as some in-
strument don’t measure (or report) signal if below a certain threshold.

Author(s)

Johannes Rainer

Examples

Load a profile mode example file
library(BiocParallel)
register(SerialParam())
library(msdata)
f <- proteomics(full.names = TRUE,

pattern = "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzML.gz")

od <- readMSData(f, mode = "onDisk")

Estimate the m/z resolution on the 3rd spectrum.
estimateMzResolution(od[[3]])

Estimate the m/z resolution for each spectrum
mzr <- estimateMzResolution(od)

plot the distribution of estimated m/z resolutions. The bimodal
distribution represents the m/z resolution of the MS1 (first peak) and
MS2 spectra (second peak).
plot(density(unlist(mzr)))

38 estimateMzScattering

estimateMzScattering Estimate m/z scattering in consecutive scans

Description

Estimate scattering of m/z values (due to technical, instrument specific noise) for the same ion in
consecutive scans of a LCMS experiment.

Usage

estimateMzScattering(x, halfWindowSize = 1L, timeDomain = FALSE)

Arguments

x MSnExp or OnDiskMSnExp object.

halfWindowSize integer(1) defining the half window size for the moving window to combine
consecutive spectra.

timeDomain logical(1) whether m/z scattering should be estimated on mz (timeDomain =
FALSE) or sqrt(mz) (timeDomain = TRUE) values. See combineSpectraMovingWindow()
for details on this parameter.

Details

The m/z values of the same ions in consecutive scans (spectra) of a LCMS run will not be identical.
This random noise is expected to be smaller than the resolution of the MS instrument. The distribu-
tion of differences of m/z values from neighboring spectra is thus expected to be (at least) bi-modal
with the first peak representing the above described random variation and the second (or largest)
peak the m/z resolution. The m/z value of the first local minimum between these first two peaks in
the distribution is returned as the m/z scattering.

Note

For timeDomain = TRUE the function does not return the estimated scattering of m/z values, but the
scattering of sqrt(mz) values.

Author(s)

Johannes Rainer

See Also

estimateMzResolution() for the function to estimate a profile-mode spectrum’s m/z resolution
from it’s data.

Examples

library(MSnbase)
library(msdata)
Load a profile-mode LC-MS data file
f <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)[1]
od <- readMSData(f, mode = "onDisk")
im <- as(filterRt(od, c(10, 20)), "MSnExp")

estimateNoise-methods 39

res <- estimateMzScattering(im)

Plot the distribution of estimated m/z scattering
plot(density(unlist(res)))

Compare the m/z resolution and m/z scattering of the spectrum with the
most peaks
idx <- which.max(unlist(spectrapply(im, peaksCount)))

res[[idx]]
abline(v = res[[idx]], lty = 2)
estimateMzResolution(im[[idx]])
As expected, the m/z scattering is much lower than the m/z resolution.

estimateNoise-methods Noise Estimation for ’Spectrum’ instances

Description

This method performs a noise estimation on individual spectra (Spectrum instances). There are cur-
rently two different noise estimators, the Median Absolute Deviation (method = "MAD") and Fried-
man’s Super Smoother (method = "SuperSmoother"), as implemented in the MALDIquant::detectPeaks
and MALDIquant::estimateNoise functions respectively.

Methods

signature(object = "Spectrum", method = "character", ...) Estiamtes the noise in a non-
centroided spectrum (Spectrum instance). method could be "MAD" or "SuperSmoother". The
arguments ... are passed to the noise estimator functions implemented in MALDIquant::estimateNoise.
Currenlty only the method = "SuperSmoother" accepts additional arguments, e.g. span.
Please see supsmu for details. This method returns a two-column matrix with the m/z and
intensity values in the first and the second column.

signature(object = "MSnExp", method = "character", ...) Estimates noise for all spectra in
object.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

S. Gibb and K. Strimmer. 2012. MALDIquant: a versatile R package for the analysis of mass spec-
trometry data. Bioinformatics 28: 2270-2271. http://strimmerlab.org/software/maldiquant/

See Also

pickPeaks, and the underlying method in MALDIquant: estimateNoise.

http://strimmerlab.org/software/maldiquant/

40 expandFeatureVars

Examples

sp1 <- new("Spectrum1",
intensity = c(1:6, 5:1),
mz = 1:11,
centroided = FALSE)

estimateNoise(sp1, method = "SuperSmoother")

expandFeatureVars Expand or merge feature variables

Description

The expandFeatureVars and mergeFeatureVars respectively expand and merge groups of feature
variables. Using these functions, a set of columns in a feature data can be merged into a single new
data.frame-column variables and a data.frame-column can be expanded into single feature columns.
The original feature variables are removed.

Usage

expandFeatureVars(x, fcol, prefix)

mergeFeatureVars(x, fcol, fcol2)

Arguments

x An object of class MSnSet.

fcol A character() of feature variables to expand (for expandFeatureVars) or
merge (for mergeFeatureVars).

prefix A character(1) to use as prefix to the new feature variables. If missing (de-
fault), then fcol is used instead. If NULL, then no prefix is used.

fcol2 A character(1) defining the name of the new feature variable.

Value

An MSnSet for expanded (merged) feature variables.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(hyperLOPIT2015)
fvarLabels(hyperLOPIT2015)
Let's merge all svm prediction feature variables
(k <- grep("^svm", fvarLabels(hyperLOPIT2015), value = TRUE))
hl <- mergeFeatureVars(hyperLOPIT2015, fcol = k, fcol2 = "SVM")
fvarLabels(hl)
head(fData(hl)$SVM)

Let's expand the new SVM into individual columns

extractPrecSpectra-methods 41

hl2 <- expandFeatureVars(hl, "SVM")
fvarLabels(hl2)
We can set the prefix manually
hl2 <- expandFeatureVars(hl, "SVM", prefix = "Expanded")
fvarLabels(hl2)
If we don't want any prefix
hl2 <- expandFeatureVars(hl, "SVM", prefix = NULL)
fvarLabels(hl2)

extractPrecSpectra-methods

Extracts precursor-specific spectra from an ’MSnExp’ object

Description

Extracts the MSMS spectra that originate from the precursor(s) having the same MZ value as defined
in theprec argument.

A warning will be issued of one or several of the precursor MZ values in prec are absent in the
experiment precursor MZ values (i.e in precursorMz(object)).

Methods

signature(object = "MSnExp", prec = "numeric") Returns an "MSnExp" containing MSMS spec-
tra whose precursor MZ values are in prec.

Author(s)

Laurent Gatto

Examples

file <- dir(system.file(package="MSnbase",dir="extdata"),
full.name=TRUE,pattern="mzXML$")

aa <- readMSData(file,verbose=FALSE)
my.prec <- precursorMz(aa)[1]
my.prec
bb <- extractPrecSpectra(aa,my.prec)
precursorMz(bb)
processingData(bb)

extractSpectraData Extract data from MSnbase objects for use in Spectra

Description

extractSpectraData extracts the spectra data (m/z and intensity values including metadata) from
MSnExp, OnDiskMSnExp, Spectrum1, Spectrum2 objects (or list of such objects) and returns
these as a DataFrame that can be used to create a Spectra::Spectra object.This function enables thus
to convert data from the old MSnbase package to the newer Spectra package.

42 factorsAsStrings

Usage

extractSpectraData(x)

Arguments

x a list of Spectrum objects or an object extending MSnExp or a MSpectra ob-
ject.

Value

DataFrame() with the full spectrum data that can be passed to the Spectra::Spectra() function
to create a Spectra object.

Author(s)

Johannes Rainer

Examples

Read an mzML file with MSnbase
fl <- system.file("TripleTOF-SWATH", "PestMix1_SWATH.mzML",

package = "msdata")
data <- filterRt(readMSData(fl, mode = "onDisk"), rt = c(1, 6))

Extract the data as a DataFrame
res <- extractSpectraData(data)
res

This can be used as an input for the Spectra constructor of the
Spectra package:
sps <- Spectra::Spectra(res)
sps

factorsAsStrings Converts factors to strings

Description

This function produces the opposite as the stringsAsFactors argument in the data.frame or
read.table functions; it converts factors columns to characters.

Usage

factorsAsStrings(x)

Arguments

x A data.frame

Value

A data.frame where factors are converted to characters.

FeatComp-class 43

Author(s)

Laurent Gatto

Examples

data(iris)
str(iris)
str(factorsAsStrings(iris))

FeatComp-class Class "FeatComp"

Description

Comparing feature names of two comparable MSnSet instances.

Objects from the Class

Objects can be created with compfnames. The method compares the feature names of two objects
of class "MSnSet". It prints a summary matrix of common and unique feature names and invisibly
returns a list of FeatComp instances.

The function will compute the common and unique features for all feature names of the two input
objects (featureNames(x) and feautreNames(y)) as well as distinct subsets as defined in the
fcol1 and fcol2 feautre variables.

Slots

name: Object of class "character" defining the name of the compared features. By convention,
"all" is used when all feature names are used; otherwise, the respective levels of the feature
variables fcol1 and fcol2.

common: Object of class "character" with the common feature names.
unique1: Object of class "character" with the features unique to the first MSnSet (x in compfname).
unique2: Object of class "character" with the features unique to the seconn MSnSet (y in compfname).
all: Object of class "logical" defining if all features of only a subset were compared. One

expects that name == "all" when all is TRUE.

Methods

Accessors names, common, unique1 and unique2 can be used to access the respective FeatComp
slots.

compfnames signature(x = "MSnSet", y = "MSnSet", fcol1 = "character", fcol2 = "character",
simplify = "logical", verbose = "logical"): creates the FeatComp comparison object
for instances x and y. The feature variables to be considered to details feature comparison can
be defined by fcol1 (default is "markers" and fcol2 for x and y respectively). Setting either
to NULL will only consider all feature names; in such case, of simplify is TRUE (default), an
FeatComp object is returned instead of a list of length 1. The verbose logical controls if a
summary table needs to be printed (default is TRUE).

compfnames signature(x = "list", y = "missing", ...): when x is a list of MSnSet instances,
compfnames is applied to all element pairs of x. Additional parameters fcol1, fcol2, simplify
and verbose are passed to the pairwise comparison method.

show signature(object = "FeatComp"): prints a summary of the object.

44 featureCV

Author(s)

Laurent Gatto and Thomas Naake

See Also

averageMSnSet to compuate an average MSnSet.

Examples

library("pRolocdata")
data(tan2009r1)
data(tan2009r2)
x <- compfnames(tan2009r1, tan2009r2)
x[[1]]
x[2:3]
head(common(x[[1]]))

data(tan2009r3)
tanl <- list(tan2009r1, tan2009r2, tan2009r3)
xx <- compfnames(tanl, fcol1 = NULL)
length(xx)
tail(xx)

all.equal(xx[[15]],
compfnames(tan2009r2, tan2009r3, fcol1 = NULL))

str(sapply(xx, common))

featureCV Calculates coeffivient of variation for features

Description

This function calculates the column-wise coefficient of variation (CV), i.e. the ration between the
standard deviation and the mean, for the features in an MSnSet. The CVs are calculated for the
groups of features defined by groupBy. For groups defined by single features, NA is returned.

Usage

featureCV(x, groupBy, na.rm = TRUE, norm = "none", suffix = NULL)

Arguments

x An instance of class MSnSet.

groupBy An object of class factor defining how to summarise the features.

na.rm A logical(1) defining whether missing values should be removed.

norm One of normalisation methods applied prior to CV calculation. See normalise()
for more details. Here, the default is 'none', i.e. no normalisation.

suffix A character(1) to be used to name the new CV columns. Default is NULL to
ignore this. This argument should be set when CV values are already present in
the MSnSet feature variables.

FeaturesOfInterest-class 45

Value

A matrix of dimensions length(levels(groupBy)) by ncol(x) with the respecive CVs. The
column names are formed by pasting CV. and the sample names of object x, possibly suffixed by
.suffix.

Author(s)

Laurent Gatto and Sebastian Gibb

See Also

combineFeatures()

Examples

data(msnset)
msnset <- msnset[1:4]
gb <- factor(rep(1:2, each = 2))
featureCV(msnset, gb)
featureCV(msnset, gb, suffix = "2")

FeaturesOfInterest-class

Features of Interest

Description

The Features of Interest infrastructure allows to define a set of features of particular interest to be
used/matched against existing data sets contained in "MSnSet". A specific set of features is stored
as an FeaturesOfInterest object and a collection of such non-redundant instances (for example
for a specific organism, project, ...) can be collected in a FoICollection.

Objects from the Class

Objects can be created with the respective FeaturesOfInterest and FoICollection constructors.

FeaturesOfInterest instances can be generated in two different ways: the constructor takes either
(1) a set of features names (a character vector) and a description (character of length 1 - any
subsequent elements are silently ignored) or (2) feature names, a description and an instance of class
"MSnSet". In the latter case, we call such FeaturesOfInterest objects traceable, because we can
identify the origin of the feature names and thus their validity. This is done by inspecting the MSnSet
instance and recording its dimensions, its name and a unique md5 hash tag (these are stores as part
of the optional objpar slot). In such cases, the feature names passed to the FeaturesOfInterest
constructor must also be present in the MSnSet; if one or more are not, an error will be thrown. If
your features of interest to be recorded stem for an existing experiment and have all been observed,
it is advised to pass the 3 arguments to the constructor to ensure that the feature names as valid.
Otherwise, only the third argument should be omitted.

FoICollection instances can be constructed by creating an empty collection and serial additions of
FeaturesOfInterest using addFeaturesOfInterest or by passing a list of FeaturesOfInterest
instance.

46 FeaturesOfInterest-class

Slots

FeaturesOfInterest class:

description: Object of class "character" describing the instance.

objpar: Optional object of class "list" providing details about the MSnSet instance originally
used to create the instance. See details section.

fnames: Object of class "character" with the feature of interest names.

date: Object of class "character" with the date the instance was first generated.

.__classVersion__: Object of class "Versions" with the FeaturesOfInterest class version.
Only relevant for development.

FoICollection class:

foic: Object of class "list" with the FeaturesOfInterest.

.__classVersion__: Object of class "Versions" with the FoICollection class version. Only
relevant for development.

Extends

Class "Versioned", directly.

Methods

FeaturesOfInterest class:

description signature(object = "FeaturesOfInterest"): returns the description of object.

foi signature(object = "FeaturesOfInterest"): returns the features of interests.

length signature(x = "FeaturesOfInterest"): returns the number of features of interest in x.

show signature(object = "FeaturesOfInterest"): displays object.

fnamesIn signature(x = "FeaturesOfInterst", y = "MSnSet", count = "logical"): if count
is FALSE (default), return a logical indicating whether there is at least one feautre of interest
present in x? Otherwise, returns the number of such features. Works also with matrices and
data.frames.

[Subsetting works like lists. Returns a new FoICollection.

[[Subsetting works like lists. Returns a new FeatureOfInterest.

FoICollection class:

description signature(object = "FoICollection"): returns the description of object.

foi signature(object = "FoICollection"): returns a list of FeaturesOfInterest.

length signature(x = "FoICollection"): returns the number of FeaturesOfInterest in the
collection.

lengths signature(x = "FoICollection"): returns the number of features of interest in each
FeaturesOfInterest in the collection x.

addFeaturesOfInterest signature(x = "FeaturesOfInterest", y = "FoICollection"): add the
FeaturesOfInterest instance x to FoICollection y. If x is already present, a message is
printed and y is returned unchanged.

rmFeaturesOfInterest signature(object = "FoICollection", i = "numeric"): removes the
ith FeatureOfInterest in the collection object.

show signature(object = "FoICollection"): displays object.

FeaturesOfInterest-class 47

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(tan2009r1)

x <- FeaturesOfInterest(description = "A traceable test set of features of interest",
fnames = featureNames(tan2009r1)[1:10],
object = tan2009r1)

x

description(x)
foi(x)

y <- FeaturesOfInterest(description = "Non-traceable features of interest",
fnames = featureNames(tan2009r1)[111:113])

y

an illegal FeaturesOfInterest
try(FeaturesOfInterest(description = "Won't work",

fnames = c("A", "Z", featureNames(tan2009r1)),
object = tan2009r1))

FeaturesOfInterest(description = "This work, but not traceable",
fnames = c("A", "Z", featureNames(tan2009r1)))

xx <- FoICollection()
xx

xx <- addFeaturesOfInterest(x, xx)
xx <- addFeaturesOfInterest(y, xx)
names(xx) <- LETTERS[1:2]
xx

Sub-setting
xx[1]
xx[[1]]
xx[["A"]]

description(xx)
foi(xx)

fnamesIn(x, tan2009r1)
fnamesIn(x, tan2009r1, count = TRUE)

rmFeaturesOfInterest(xx, 1)

48 filterIdentificationDataFrame

fillUp Fills up a vector

Description

This function replaces all the empty characters "" and/or NAs with the value of the closest preceding
the preceding non-NA/"" element. The function is used to populate dataframe or matrice columns
where only the cells of the first row in a set of partially identical rows are explicitly populated and
the following are empty.

Usage

fillUp(x)

Arguments

x a vector.

Value

A vector as x with all empty characters "" and NA values replaced by the preceding non-NA/"" value.

Author(s)

Laurent Gatto

Examples

d <- data.frame(protein=c("Prot1","","","Prot2","",""),
peptide=c("pep11","","pep12","pep21","pep22",""),
score=c(1:2,NA,1:3))

d
e <- apply(d,2,fillUp)
e
data.frame(e)
fillUp(d[,1])

filterIdentificationDataFrame

Filter out unreliable PSMs.

Description

A function to filter out PSMs matching to the decoy database, of rank greater than one and matching
non-proteotypic peptides.

formatRt 49

Usage

filterIdentificationDataFrame(
x,
decoy = "isDecoy",
rank = "rank",
accession = "DatabaseAccess",
spectrumID = "spectrumID",
verbose = isMSnbaseVerbose()

)

Arguments

x A data.frame containing PSMs.

decoy The column name defining whether entries match the decoy database. Default is
"isDecoy". The column should be a logical and only PSMs holding a FALSE
are retained. Ignored is set to NULL.

rank The column name holding the rank of the PSM. Default is "rank". This column
should be a numeric and only PSMs having rank equal to 1 are retained. Ignored
is set to NULL.

accession The column name holding the protein (groups) accession. Default is "DatabaseAccess".
Ignored is set to NULL.

spectrumID The name of the spectrum identifier column. Default is spectrumID.

verbose A logical verbosity flag. Default is to take isMSnbaseVerbose().

Details

The PSMs should be stored in a data.frame such as those produced by readMzIdData(). Note
that this function should be called before calling the reduce method on a PSM data.frame.

Value

A new data.frame with filtered out peptides and with the same columns as the input x.

Author(s)

Laurent Gatto

formatRt Format Retention Time

Description

This function is used to convert retention times. Conversion is seconds to/from the more human
friendly format "mm:sec". The implementation is from MsCoreUtils::formatRt().

Usage

formatRt(rt)

50 getVariableName

Arguments

rt retention time in seconds (numeric) or "mm:sec" (character).

Value

A vector of same length as rt.

Author(s)

Laurent Gatto and Sebastian Gibb

Examples

formatRt(1524)
formatRt("25:24")

getVariableName Return a variable name

Description

Return the name of variable varname in call match_call.

Usage

getVariableName(match_call, varname)

Arguments

match_call An object of class call, as returned by match.call.

varname An character of length 1 which is looked up in match_call.

Value

A character with the name of the variable passed as parameter varname in parent close of match_call.

Author(s)

Laurent Gatto

Examples

a <- 1
f <- function(x, y)
MSnbase:::getVariableName(match.call(), "x")

f(x = a)
f(y = a)

grepEcols 51

grepEcols Returns the matching column names of indices.

Description

Given a text spread sheet f and a pattern to be matched to its header (first line in the file), the
function returns the matching columns names or indices of the corresponding data.frame.

Usage

grepEcols(f, pattern, ..., n = 1)

getEcols(f, ..., n = 1)

Arguments

f A connection object or a character string to be read in with readLines(f, n
= 1).

pattern A character string containing a regular expression to be matched to the file’s
header.

... Additional parameters passed to strsplit to split the file header into individual
column names.

n An integer specifying which line in file f to grep (get). Default is 1. Note that
this argument must be named.

Details

The function starts by reading the first line of the file (or connection) f with readLines, then splits
it according to the optional ... arguments (it is important to correctly specify strsplit’s split
character vector here) and then matches pattern to the individual column names using grep.

Similarly, getEcols can be used to explore the column names and decide for the appropriate
pattern value.

These functions are useful to check the parameters to be provided to readMSnSet2.

Value

Depending on value, the matching column names of indices. In case of getEcols, a character of
column names.

Author(s)

Laurent Gatto

See Also

readMSnSet2

52 imageNA2

hasSpectra Checks if raw data files have any spectra or chromatograms

Description

Helper functions to check whether raw files contain spectra or chromatograms.

Usage

hasSpectra(files)

hasChromatograms(files)

Arguments

files A character() with raw data filenames.

Value

A logical(n) where n == length(x) with TRUE if that files contains at least one spectrum, FALSE
otherwise.

Author(s)

Laurent Gatto

Examples

f <- msdata::proteomics(full.names = TRUE)[1:2]
hasSpectra(f)
hasChromatograms(f)

imageNA2 NA heatmap visualisation for 2 groups

Description

Produces a heatmap after reordring rows and columsn to highlight missing value patterns.

Usage

imageNA2(
object,
pcol,
Rowv,
Colv = TRUE,
useGroupMean = FALSE,
plot = TRUE,
...

)

impute,MSnSet-method 53

Arguments

object An instance of class MSnSet

pcol Either the name of a phenoData variable to be used to determine the group struc-
ture or a factor or any object that can be coerced as a factor of length equal
to nrow(object). The resulting factor must have 2 levels. If missing (default)
image(object) is called.

Rowv Determines if and how the rows/features are reordered. If missing (default),
rows are reordered according to order((nNA1 + 1)^2/(nNA2 + 1)), where NA1
and NA2 are the number of missing values in each group. Use a vector of
numerics of feautre names to customise row order.

Colv A logical that determines if columns/samples are reordered. Default is TRUE.

useGroupMean Replace individual feature intensities by the group mean intensity. Default is
FALSE.

plot A logical specifying of an image should be produced. Default is TRUE.

... Additional arguments passed to image.

Value

Used for its side effect of plotting. Invisibly returns Rovw and Colv.

Author(s)

Laurent Gatto, Samuel Wieczorek and Thomas Burger

Examples

library("pRolocdata")
library("pRoloc")
data(dunkley2006)
pcol <- ifelse(dunkley2006$fraction <= 5, "A", "B")
nax <- makeNaData(dunkley2006, pNA = 0.10)
exprs(nax)[sample(nrow(nax), 30), pcol == "A"] <- NA
exprs(nax)[sample(nrow(nax), 50), pcol == "B"] <- NA
MSnbase:::imageNA2(nax, pcol)
MSnbase:::imageNA2(nax, pcol, useGroupMean = TRUE)
MSnbase:::imageNA2(nax, pcol, Colv = FALSE, useGroupMean = FALSE)
MSnbase:::imageNA2(nax, pcol, Colv = FALSE, useGroupMean = TRUE)

impute,MSnSet-method Quantitative proteomics data imputation

Description

The impute method performs data imputation on MSnSet instances using a variety of methods.

Users should proceed with care when imputing data and take precautions to assure that the impu-
tation produce valid results, in particular with naive imputations such as replacing missing values
with 0.

See MsCoreUtils::impute_matrix() for details on the different imputation methods available
and strategies.

54 impute,MSnSet-method

Usage

S4 method for signature 'MSnSet'
impute(object, method, ...)

Arguments

object An MSnSet object with missing values to be imputed.

method character(1) defining the imputation method. See MsCoreUtils::imputeMethods()
for available ones. See MsCoreUtils::impute_matrix() for details.

... Additional parameters passed to the inner imputation function. See MsCoreUtils::impute_matrix()
for details.

Examples

data(naset)

table of missing values along the rows
table(fData(naset)$nNA)

table of missing values along the columns
pData(naset)$nNA

non-random missing values
notna <- which(!fData(naset)$randna)
length(notna)
notna

impute(naset, method = "min")

if (require("imputeLCMD")) {
impute(naset, method = "QRILC")
impute(naset, method = "MinDet")

}

if (require("norm"))
impute(naset, method = "MLE")

impute(naset, "mixed",
randna = fData(naset)$randna,
mar = "knn", mnar = "QRILC")

neighbour averaging
x <- naset[1:4, 1:6]

exprs(x)[1, 1] <- NA ## min value
exprs(x)[2, 3] <- NA ## average
exprs(x)[3, 1:2] <- NA ## min value and average
4th row: no imputation
exprs(x)

exprs(impute(x, "nbavg"))

iPQF 55

iPQF iPQF: iTRAQ (and TMT) Protein Quantification based on Features

Description

The iPQF spectra-to-protein summarisation method integrates peptide spectra characteristics and
quantitative values for protein quantitation estimation. Spectra features, such as charge state, se-
quence length, identification score and others, contain valuable information concerning quantifi-
cation accuracy. The iPQF algorithm assigns weights to spectra according to their overall feature
reliability and computes a weighted mean to estimate protein quantities. See also combineFeatures
for a more general overview of feature aggregation and examples.

Usage

iPQF(
object,
groupBy,
low.support.filter = FALSE,
ratio.calc = "sum",
method.combine = FALSE,
feature.weight = c(7, 6, 4, 3, 2, 1, 5)^2

)

Arguments

object An instance of class MSnSet containing absolute ion intensities.

groupBy Vector defining spectra to protein matching. Generally, this is a feature variable
such as fData(object)$accession.

low.support.filter

A logical specifying if proteins being supported by only 1-2 peptide spectra
should be filtered out. Default is FALSE.

ratio.calc Either "none" (don’t calculate any ratios), "sum" (default), or a specific chan-
nel (one of sampleNames(object)) defining how to calculate relative peptides
intensities.

method.combine A logical defining whether to further use median polish to combine features.

feature.weight Vector "numeric" giving weight to the different features. Default is the squared
order of the features redundant -unique-distance metric, charge state, ion inten-
sity, sequence length, identification score, modification state, and mass based on
a robustness analysis.

Value

A matrix with estimated protein ratios.

Author(s)

Martina Fischer

56 isCentroidedFromFile

References

iPQF: a new peptide-to-protein summarization method using peptide spectra characteristics to im-
prove protein quantification. Fischer M, Renard BY. Bioinformatics. 2016 Apr 1;32(7):1040-7.
doi:10.1093/bioinformatics/btv675. Epub 2015 Nov 20. PubMed PMID:26589272.

Examples

data(msnset2)
head(exprs(msnset2))
prot <- combineFeatures(msnset2,

groupBy = fData(msnset2)$accession,
method = "iPQF")

head(exprs(prot))

isCentroidedFromFile Get mode from mzML data file

Description

The function extracts the mode (profile or centroided) from the raw mass spectrometry file by pars-
ing the mzML file directly. If the object x stems from any other type of file, NAs are returned.

Usage

isCentroidedFromFile(x)

Arguments

x An object of class OnDiskMSnExp.

Details

This function is much faster than isCentroided(), which estimates mode from the data, but is
limited to data stemming from mzML files which are still available in their original location (and
accessed with fileNames(x)).

Value

A named logical vector of the same length as x.

Author(s)

Laurent Gatto

Examples

library("msdata")
f <- proteomics(full.names = TRUE,

pattern = "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01.mzML.gz")
x <- readMSData(f, mode = "onDisk")
table(isCentroidedFromFile(x), msLevel(x))

iTRAQ4 57

iTRAQ4 iTRAQ 4-plex set

Description

This instance of class "ReporterIons" corresponds to the iTRAQ 4-plex set, i.e the 114, 115,
116 and 117 isobaric tags. In the iTRAQ5 data set, an unfragmented tag, i.e reporter and attached
isobaric tag, is also included at MZ 145. These objects are used to plot the reporter ions of interest
in an MSMS spectra (see "Spectrum2") as well as for quantification (see quantify).

Usage

iTRAQ4
iTRAQ5
iTRAQ8
iTRAQ9

References

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S,
Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin
DJ. "Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric
tagging reagents." Mol Cell Proteomics, 2004 Dec;3(12):1154-69. Epub 2004 Sep 22. PubMed
PMID: 15385600.

See Also

TMT6.

Examples

iTRAQ4
iTRAQ4[1:2]

newReporter <- new("ReporterIons",
description="an example",
name="my reporter ions",
reporterNames=c("myrep1","myrep2"),
mz=c(121,122),
col=c("red","blue"),
width=0.05)

newReporter

58 listOf

itraqdata Example MSnExp and MSnSet data sets

Description

itraqdata is and example data sets is an iTRAQ 4-plex experiment that has been run on an Orbitrap
Velos instrument. It includes identification data in the feature data slot obtain from the Mascot
search engine. It is a subset of an spike-in experiment where proteins have spiked in an Erwinia
background, as described in

Karp et al. (2010), Addressing accuracy and precision issues in iTRAQ quantitation, Mol Cell
Proteomics. 2010 Sep;9(9):1885-97. Epub 2010 Apr 10. (PMID 20382981).

The spiked-in proteins in itradata are BSA and ENO and are present in relative abundances 1,
2.5, 5, 10 and 10, 5, 2.5, 1 in the 114, 115, 116 and 117 reporter tags.

The msnset object is produced by running the quantify method on the itraqdata experimental
data, as detailed in the quantify example. This example data set is used in the MSnbase-demo
vignette, available with vignette("MSnbase-demo", package="MSnbase").

The msnset2 object is another example iTRAQ4 data that is used to demonstrate features of the
package, in particular the iPQF feature aggregation method, described in iPQF. It corresponds to 11
proteins with spectra measurements from the original data set described by Breitwieser et al. (2011)
General statistical modeling of data from protein relative expression isobaric tags. J. Proteome
Res., 10, 2758-2766.

Usage

itraqdata

Examples

data(itraqdata)
itraqdata

created by
msnset <- quantify(itraqdata, method = "trap", reporters = iTRAQ4)
data(msnset)
msnset

data(msnset2)
msnset2

listOf Tests equality of list elements class

Description

Compares equality of all members of a list.

Usage

listOf(x, class, valid = TRUE)

makeCamelCase 59

Arguments

x A list.

class A character defining the expected class.

valid A logical defining if all elements should be tested for validity. Default is TRUE.

Value

TRUE is all elements of x inherit from class.

Author(s)

Laurent Gatto

Examples

listOf(list(), "foo")
listOf(list("a", "b"), "character")
listOf(list("a", 1), "character")

makeCamelCase Convert to camel case by replacing dots by captial letters

Description

Convert a vector of characters to camel case by replacing dots by captial letters.

Usage

makeCamelCase(x, prefix)

Arguments

x A vector to be transformed to camel case.

prefix An optional character of length one. Any additional elements are ignores.

Value

A character of same length as x.

Author(s)

Laurent Gatto

Examples

nms <- c("aa.foo", "ab.bar")
makeCamelCase(nms)
makeCamelCase(nms, prefix = "x")

60 makeNaData

makeNaData Create a data with missing values

Description

These functions take an instance of class "MSnSet" and sets randomly selected values to NA.

Usage

makeNaData(object, nNA, pNA, exclude)

makeNaData2(object, nRows, nNAs, exclude)

whichNA(x)

Arguments

object An instance of class MSnSet.

nNA The absolute number of missing values to be assigned.

pNA The proportion of missing values to be assignmed.

exclude A vector to be used to subset object, defining rows that should not be used to
set NAs.

nRows The number of rows for each set.

nNAs The number of missing values for each set.

x A matrix or an instance of class MSnSet.

Details

makeNaData randomly selects a number nNA (or a proportion pNA) of cells in the expression matrix
to be set to NA.

makeNaData2 will select length(nRows) sets of rows from object, each with nRows[i] rows
respectively. The first set will be assigned nNAs[1] missing values, the second nNAs[2], ... As
opposed to makeNaData, this permits to control the number of NAs per rows.

The whichNA can be used to extract the indices of the missing values, as illustrated in the example.

Value

An instance of class MSnSet, as object, but with the appropriate number/proportion of missing
values. The returned object has an additional feature meta-data columns, nNA

Author(s)

Laurent Gatto

MChromatograms 61

Examples

Example 1
library(pRolocdata)
data(dunkley2006)
sum(is.na(dunkley2006))
dunkleyNA <- makeNaData(dunkley2006, nNA = 150)
processingData(dunkleyNA)
sum(is.na(dunkleyNA))
table(fData(dunkleyNA)$nNA)
naIdx <- whichNA(dunkleyNA)
head(naIdx)
Example 2
dunkleyNA <- makeNaData(dunkley2006, nNA = 150, exclude = 1:10)
processingData(dunkleyNA)
table(fData(dunkleyNA)$nNA[1:10])
table(fData(dunkleyNA)$nNA)
Example 3
nr <- rep(10, 5)
na <- 1:5
x <- makeNaData2(dunkley2006[1:100, 1:5],

nRows = nr,
nNAs = na)

processingData(x)
(res <- table(fData(x)$nNA))
stopifnot(as.numeric(names(res)[-1]) == na)
stopifnot(res[-1] == nr)
Example 3
nr2 <- c(5, 12, 11, 8)
na2 <- c(3, 8, 1, 4)
x2 <- makeNaData2(dunkley2006[1:100, 1:10],

nRows = nr2,
nNAs = na2)

processingData(x2)
(res2 <- table(fData(x2)$nNA))
stopifnot(as.numeric(names(res2)[-1]) == sort(na2))
stopifnot(res2[-1] == nr2[order(na2)])
Example 5
nr3 <- c(5, 12, 11, 8)
na3 <- c(3, 8, 1, 3)
x3 <- makeNaData2(dunkley2006[1:100, 1:10],

nRows = nr3,
nNAs = na3)

processingData(x3)
(res3 <- table(fData(x3)$nNA))

MChromatograms Container for multiple Chromatogram objects

Description

The MChromatograms class allows to store Chromatogram() objects in a matrix-like two-dimensional
structure.

62 MChromatograms

Usage

MChromatograms(data, phenoData, featureData, ...)

S4 method for signature 'MChromatograms'
show(object)

S4 method for signature 'MChromatograms,ANY,ANY,ANY'
x[i, j, drop = FALSE]

S4 replacement method for signature 'MChromatograms'
x[i, j] <- value

S4 method for signature 'MChromatograms,ANY'
plot(
x,
col = "#00000060",
lty = 1,
type = "l",
xlab = "retention time",
ylab = "intensity",
main = NULL,
...

)

S4 method for signature 'MChromatograms'
phenoData(object)

S4 method for signature 'MChromatograms'
pData(object)

S4 replacement method for signature 'MChromatograms,data.frame'
pData(object) <- value

S4 method for signature 'MChromatograms'
x$name

S4 replacement method for signature 'MChromatograms'
x$name <- value

S4 replacement method for signature 'MChromatograms'
colnames(x) <- value

S4 method for signature 'MChromatograms'
sampleNames(object)

S4 replacement method for signature 'MChromatograms,ANY'
sampleNames(object) <- value

S4 method for signature 'MChromatograms'
isEmpty(x)

S4 method for signature 'MChromatograms'

MChromatograms 63

featureNames(object)

S4 replacement method for signature 'MChromatograms'
featureNames(object) <- value

S4 method for signature 'MChromatograms'
featureData(object)

S4 replacement method for signature 'MChromatograms,ANY'
featureData(object) <- value

S4 method for signature 'MChromatograms'
fData(object)

S4 replacement method for signature 'MChromatograms,ANY'
fData(object) <- value

S4 method for signature 'MChromatograms'
fvarLabels(object)

S4 replacement method for signature 'MChromatograms'
rownames(x) <- value

S4 method for signature 'MChromatograms'
precursorMz(object)

S4 method for signature 'MChromatograms'
productMz(object)

S4 method for signature 'MChromatograms'
mz(object)

S4 method for signature 'MChromatograms'
polarity(object)

S4 method for signature 'MChromatograms'
bin(x, binSize = 0.5, breaks = numeric(), fun = max)

S4 method for signature 'MChromatograms'
clean(object, all = FALSE, na.rm = FALSE)

S4 method for signature 'MChromatograms'
normalize(object, method = c("max", "sum"))

S4 method for signature 'MChromatograms'
filterIntensity(object, intensity = 0, ...)

S4 method for signature 'MChromatograms,Chromatogram'
alignRt(x, y, method = c("closest", "approx"), ...)

S4 method for signature 'MChromatograms'
c(x, ...)

64 MChromatograms

S4 method for signature 'MChromatograms,missing'
compareChromatograms(
x,
y,
ALIGNFUN = alignRt,
ALIGNFUNARGS = list(),
FUN = cor,
FUNARGS = list(use = "pairwise.complete.obs"),
...

)

S4 method for signature 'MChromatograms,MChromatograms'
compareChromatograms(
x,
y,
ALIGNFUN = alignRt,
ALIGNFUNARGS = list(),
FUN = cor,
FUNARGS = list(use = "pairwise.complete.obs"),
...

)

S4 method for signature 'MChromatograms'
transformIntensity(object, FUN = identity)

Arguments

data for MChromatograms: a list of Chromatogram() objects.

phenoData for MChromatograms: either a data.frame, AnnotatedDataFrame describing
the phenotypical information of the samples.

featureData for MChromatograms: either a data.frame or AnnotatedDataFrame with addi-
tional information for each row of chromatograms.

... for MChromatograms: additional parameters to be passed to the matrix con-
structor, such as nrow, ncol and byrow. For compareChromatograms: ignored.

object a MChromatograms object.

x for all methods: a MChromatograms object.

i for [: numeric, logical or character defining which row(s) to extract.

j for [: numeric, logical or character defining which columns(s) to extract.

drop for [: logical(1) whether to drop the dimensionality of the returned object (if
possible). The default is drop = FALSE, i.e. each subsetting returns a MChromatograms
object (or a Chromatogram object if a single element is extracted).

value for [<-: the replacement object(s). Can be a list of [Chromatogram()objects or, if length ofiandjare 1, a singleChromatogram‘
object.

For `pData<-`: a `data.frame` with the number of rows matching
the number of columns of `object`.

For `colnames`: a `character` with the new column names.

MChromatograms 65

col for plot: the color to be used for plotting. Either a vector of length 1 or equal
to ncol(x).

lty for plot: the line type (see plot in the graphics package for more details).
Can be either a vector of length 1 or of length equal to ncol(x).

type for plot: the type of plot (see plot from the graphics package for more de-
tails). Can be either a vector of length 1 or of length equal to ncol(x).

xlab for plot: the x-axis label.

ylab for plot: the y-axis label.

main for plot: the plot title. If not provided the mz range will be used as plot title.

name for $, the name of the pheno data column.

binSize for bin: numeric(1) with the size of the bins (in seconds).

breaks For bin: numeric defining the bins. Usually not required as the function calcu-
lates the bins automatically based on binSize and the retention time range of
chromatograms in the same row.

fun for bin: function to be used to aggregate the intensity values falling within each
bin.

all for clean: logical(1) whether all 0-intensities should be removed (all =
TRUE), or whether 0-intensities adjacent to peaks should be kept (all = FALSE;
default).

na.rm for clean: logical(1) whether all NA intensities should be removed prior to
clean 0-intensity data points.

method character(1). For normalise: defining whether each chromatogram should
be normalized to its maximum signal (method = "max") or total signal (method
= "sum"). For alignRt: alignment methods (see documentation for alignRt in
the Chromatogram() help page. Defaults to method = "closest".

intensity for filterIntensity: numeric(1) or function to use to filter intensities. See
description for details.

y for alignRt: a Chromatogram() object against which x should be aligned
against.

ALIGNFUN for compareChromatograms: function to align chromatogram x against chro-
matogram y. Defaults to alignRt.

ALIGNFUNARGS list of parameters to be passed to ALIGNFUN.

FUN for transformIntensity: function to transform chromatograms’ intensity val-
ues. Defaults to FUN = identity.

FUNARGS for compareChromatograms: list with additional parameters for FUN. Defaults
to FUNARGS = list(use = "pairwise.complete.obs").

Details

The MChromatograms class extends the base matrix class and hence allows to store Chromatogram()
objects in a two-dimensional array. Each row is supposed to contain Chromatogram objects for one
MS data slice with a common m/z and rt range. Columns contain Chromatogram objects from the
same sample.

66 MChromatograms

Value

For [: the subset of the MChromatograms object. If a single element is extracted (e.g. if i and j
are of length 1) a Chromatogram() object is returned. Otherwise (if drop = FALSE, the default, is
specified) a MChromatograms object is returned. If drop = TRUE is specified, the method returns a
list of Chromatogram objects.

For `phenoData`: an `AnnotatedDataFrame` representing the
pheno data of the object.

For `pData`: a `data.frame` representing the pheno data of
the object.

For `$`: the value of the corresponding column in the pheno data
table of the object.

For all other methods see function description.

Object creation

MChromatograms are returned by a chromatogram() function from an MSnExp or OnDiskMSnExp.
Alternatively, the MChromatograms constructor function can be used.

Data access

• $ and $<-: get or replace individual columns of the object’s phenodata.

• colnames and colnames<-: replace or set the column names of the MChromatograms object.
Does also set the rownames of the phenoData.

• fData: return the feature data as a data.frame.
• fData<-: replace the object’s feature data by passing a data.frame.

• featureData: return the feature data.
• featureData<-: replace the object’s feature data.

• featureNames: returns the feature names of the MChromatograms object.
• featureNames<-: set the feature names.

• fvarLabels: return the feature data variable names (i.e. column names).

• isEmpty: returns TRUE if the MChromatograms object or all of its Chromatogram objects is/are
empty or contain only NA intensities.

• mz: returns the m/z for each row of the MChromatograms object as a two-column matrix (with
columns "mzmin" and "mzmax").

• pData: accesses the phenotypical description of the samples. Returns a data.frame.
• pData<-: replace the phenotype data.

• phenoData: accesses the phenotypical description of the samples. Returns an AnnotatedDataFrame
object.

• polarity: returns the polarity of the scans/chromatograms: 1, 0 or -1 for positive, negative
or unknown polarity.

• precursorMz: return the precursor m/z from the chromatograms. The method returns a
matrix with 2 columns ("mzmin" and "mzmax") and as many rows as there are rows in the
MChromatograms object. Each row contains the precursor m/z of the chromatograms in that
row. An error is thrown if the chromatograms within one row have different precursor m/z
values.

MChromatograms 67

• productMz: return the product m/z from the chromatograms. The method returns a matrix
with 2 columns ("mzmin" and "mzmax") and as many rows as there are rows in the MChromatograms
object. Each row contains the product m/z of the chromatograms in that row. An error is
thrown if the chromatograms within one row have different product m/z values.

• rownames<-: replace the rownames (and featureNames) of the object.

Data subsetting, combining and filtering

• [subset (similar to a matrix) by row and column (with parameters i and j).
• [<- replace individual or multiple elements. value has to be either a single Chromatogram

obhect or a list of Chromatogram objects.

• c concatenate (row-wise) MChromatogram objects with the same number of samples (columns).
• filterIntensity: filter each Chromatogram() object within the MChromatograms removing

data points with intensities below the user provided threshold. If intensity is a numeric
value, the returned chromatogram will only contain data points with intensities > intensity.
In addition it is possible to provide a function to perform the filtering. This function is expected
to take the input Chromatogram (object) and to return a logical vector with the same length
then there are data points in object with TRUE for data points that should be kept and FALSE
for data points that should be removed. See the filterIntensity documentation in the
Chromatogram() help page for details and examples.

Data processing and manipulation

• alignRt: align all chromatograms in an MChromatograms object against the chromatogram
specified with y. See documentation on alignRt in the Chromatogram() help page.

• bin: aggregates intensity values of chromatograms in discrete bins along the retention time
axis. By default, individual Chromatogram objects of one row are binned into the same bins.
The function returns a MChromatograms object with binned chromatograms.

• clean: removes 0-intensity data points. Either all of them (with all = TRUE) or all except
those adjacent to non-zero intensities (all = FALSE; default). See clean() documentation for
more details and examples.

• compareChromatograms: calculates pairwise similarity score between chromatograms in x
and y and returns a similarity matrix with the number of rows corresponding to the number
of chromatograms in x and the number of columns to the number of chromatograms in y.
If y is missing, a pairwise comparison is performed between all chromatograms in x. See
documentation on compareChromatograms in the Chromatogram() help page for details.

• normalize, normalise: normalises the intensities of a chromatogram by dividing them ei-
ther by the maximum intensity (method = "max") or total intensity (method = "sum") of the
chromatogram.

• transformIntensity: allows to manipulate the intensity values of all chromatograms using
a user provided function. See below for examples.

Data visualization

• plot: plots a MChromatograms object. For each row in the object one plot is created, i.e. all
Chromatogram() objects in the same row are added to the same plot. If nrow(x) > 1 the plot
area is split into nrow(x) sub-plots and the chromatograms of one row are plotted in each.

Author(s)

Johannes Rainer

68 MChromatograms

See Also
Chromatogram()] for the class representing chromatogram data. [chromatogram()] for the method to extract a MChro-
matogramsobject from aMSnExporOnDiskMSnExp object. [readSRMData() for the function
to read chromatographic data of an SRM/MRM experiment.

Examples

Creating some chromatogram objects to put them into a MChromatograms object
ints <- abs(rnorm(25, sd = 200))
ch1 <- Chromatogram(rtime = 1:length(ints), ints)
ints <- abs(rnorm(32, sd = 90))
ch2 <- Chromatogram(rtime = 1:length(ints), ints)
ints <- abs(rnorm(19, sd = 120))
ch3 <- Chromatogram(rtime = 1:length(ints), ints)
ints <- abs(rnorm(21, sd = 40))
ch4 <- Chromatogram(rtime = 1:length(ints), ints)

Create a MChromatograms object with 2 rows and 2 columns
chrs <- MChromatograms(list(ch1, ch2, ch3, ch4), nrow = 2)
chrs

Extract the first element from the second column. Extracting a single
element always returns a Chromatogram object.
chrs[1, 2]

Extract the second row. Extracting a row or column (i.e. multiple elements
returns by default a list of Chromatogram objects.
chrs[2,]

Extract the second row with drop = FALSE, i.e. return a MChromatograms
object.
chrs[2, , drop = FALSE]

Replace the first element.
chrs[1, 1] <- ch3
chrs

Add a pheno data.
pd <- data.frame(name = c("first sample", "second sample"),

idx = 1:2)
pData(chrs) <- pd

Column names correspond to the row names of the pheno data
chrs

Access a column within the pheno data
chrs$name

Access the m/z ratio for each row; this will be NA for the present
object
mz(chrs)

Data visualization

Create some random Chromatogram objects
ints <- abs(rnorm(123, mean = 200, sd = 32))

meanMzInts 69

ch1 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 231)
ints <- abs(rnorm(122, mean = 250, sd = 43))
ch2 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 231)
ints <- abs(rnorm(125, mean = 590, sd = 120))
ch3 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 542)
ints <- abs(rnorm(124, mean = 1200, sd = 509))
ch4 <- Chromatogram(rtime = seq_along(ints), intensity = ints, mz = 542)

Combine into a 2x2 MChromatograms object
chrs <- MChromatograms(list(ch1, ch2, ch3, ch4), byrow = TRUE, ncol = 2)

Plot the second row
plot(chrs[2, , drop = FALSE])

Plot all chromatograms
plot(chrs, col = c("#ff000080", "#00ff0080"))

log2 transform intensities
res <- transformIntensity(chrs, log2)
plot(res)

meanMzInts Combine a list of spectra to a single spectrum

Description

Combine peaks from several spectra into a single spectrum. Intensity and m/z values from the input
spectra are aggregated into a single peak if the difference between their m/z values is smaller than
mzd or smaller than ppm of their m/z. While mzd can be used to group mass peaks with a single
fixed value, ppm allows a m/z dependent mass peak grouping. Intensity values of grouped mass
peaks are aggregated with the intensityFun, m/z values by the mean, or intensity weighted mean
if weighted = TRUE.

Usage

meanMzInts(
x,
...,
intensityFun = base::mean,
weighted = FALSE,
main = 1L,
mzd,
ppm = 0,
timeDomain = FALSE,
unionPeaks = TRUE

)

Arguments

x list of Spectrum objects.

... additional parameters that are passed to intensityFun.

intensityFun function to aggregate the intensity values per m/z group. Should be a function
or the name of a function. The function is expected to return a numeric(1).

70 meanMzInts

weighted logical(1) whether m/z values per m/z group should be aggregated with an
intensity-weighted mean. The default is to report the mean m/z.

main integer(1) defining the main spectrum, i.e. the spectrum which m/z and in-
tensity values get replaced and is returned. By default the first spectrum in x is
used.

mzd numeric(1) defining the maximal m/z difference below which mass peaks are
considered to represent the same ion/mass peak. Intensity values for such grouped
mass peaks are aggregated. If not specified this value is estimated from the dis-
tribution of differences of m/z values from the provided spectra (see details).

ppm numeric(1) allowing to perform a m/z dependent grouping of mass peaks. See
details for more information.

timeDomain logical(1) whether definition of the m/z values to be combined into one m/z is
performed on m/z values (timeDomain = FALSE) or on sqrt(mz) (timeDomain
= TRUE). Profile data from TOF MS instruments should be aggregated based
on the time domain (see details). Note that a pre-defined mzd should also be
estimated on the square root of m/z values if timeDomain = TRUE.

unionPeaks logical(1) whether the union of all peaks (peak groups) from all spectra are
reported or only peak groups that contain peaks that are present in the main
spectrum (defined by main). The default is to report the union of peaks from all
spectra.

Details

For general merging of spectra, the mzd and/or ppm should be manually specified based on the
precision of the MS instrument. Peaks from spectra with a difference in their m/z being smaller
than mzd or smaller than ppm of their m/z are grouped into the same final peak.

Some details for the combination of consecutive spectra of an LCMS run:

The m/z values of the same ion in consecutive scans (spectra) of a LCMS run will not be identical.
Assuming that this random variation is much smaller than the resolution of the MS instrument (i.e.
the difference between m/z values within each single spectrum), m/z value groups are defined across
the spectra and those containing m/z values of the main spectrum are retained. The maximum al-
lowed difference between m/z values for the same ion is estimated as in estimateMzScattering().
Alternatively it is possible to define this maximal m/z difference with the mzd parameter. All m/z
values with a difference smaller than this value are combined to a m/z group. Intensities and m/z
values falling within each of these m/z groups are aggregated using the intensity_fun and mz_fun,
respectively. It is highly likely that all QTOF profile data is collected with a timing circuit that col-
lects data points with regular intervals of time that are then later converted into m/z values based on
the relationship t = k * sqrt(m/z). The m/z scale is thus non-linear and the m/z scattering (which
is in fact caused by small variations in the time circuit) will thus be different in the lower and upper
m/z scale. m/z-intensity pairs from consecutive scans to be combined are therefore defined by de-
fault on the square root of the m/z values. With timeDomain = FALSE, the actual m/z values will be
used.

Value

Spectrum with m/z and intensity values representing the aggregated values across the provided
spectra. The returned spectrum contains the union of all peaks from all spectra (if unionPeaks =
TRUE), or the same number of m/z and intensity pairs than the spectrum with index main in x (if
unionPeaks = FALSE. All other spectrum data (such as retention time etc) is taken from the main
spectrum.

meanMzInts 71

Note

This allows e.g. to combine profile-mode spectra of consecutive scans into the values for the main
spectrum. This can improve centroiding of profile-mode data by increasing the signal-to-noise ratio
and is used in the combineSpectraMovingWindow() function.

Author(s)

Johannes Rainer, Sigurdur Smarason

See Also

estimateMzScattering() for a function to estimate m/z scattering in consecutive scans.

estimateMzResolution() for a function estimating the m/z resolution of a spectrum.

combineSpectraMovingWindow() for the function to combine consecutive spectra of an MSnExp
object using a moving window approach.

Other spectra combination functions: consensusSpectrum()

Examples

library(MSnbase)
Create 3 example profile-mode spectra with a resolution of 0.1 and small
random variations on these m/z values on consecutive scans.
set.seed(123)
mzs <- seq(1, 20, 0.1)
ints1 <- abs(rnorm(length(mzs), 10))
ints1[11:20] <- c(15, 30, 90, 200, 500, 300, 100, 70, 40, 20) # add peak
ints2 <- abs(rnorm(length(mzs), 10))
ints2[11:20] <- c(15, 30, 60, 120, 300, 200, 90, 60, 30, 23)
ints3 <- abs(rnorm(length(mzs), 10))
ints3[11:20] <- c(13, 20, 50, 100, 200, 100, 80, 40, 30, 20)

Create the spectra.
sp1 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),

intensity = ints1)
sp2 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.01),

intensity = ints2)
sp3 <- new("Spectrum1", mz = mzs + rnorm(length(mzs), sd = 0.009),

intensity = ints3)

Combine the spectra
sp_agg <- meanMzInts(list(sp1, sp2, sp3))

Plot the spectra before and after combining
par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))
plot(mz(sp1), intensity(sp1), xlim = range(mzs[5:25]), type = "h", col = "red")
points(mz(sp2), intensity(sp2), type = "h", col = "green")
points(mz(sp3), intensity(sp3), type = "h", col = "blue")
plot(mz(sp_agg), intensity(sp_agg), xlim = range(mzs[5:25]), type = "h",

col = "black")

72 MIAPE-class

MIAPE-class The "MIAPE" Class for Storing Proteomics Experiment Information

Description

The Minimum Information About a Proteomics Experiment. The current implementation is based
on the MIAPE-MS 2.4 document.

Slots

title: Object of class character containing a single-sentence experiment title.

abstract: Object of class character containing an abstract describing the experiment.

url: Object of class character containing a URL for the experiment.

pubMedIds: Object of class character listing strings of PubMed identifiers of papers relevant to
the dataset.

samples: Object of class list containing information about the samples.

preprocessing: Object of class list containing information about the pre-processing steps used
on the raw data from this experiment.

other: Object of class list containing other information for which none of the above slots applies.

dateStamp: Object of class character, giving the date on which the work described was initiated;
given in the standard ’YYYY-MM-DD’ format (with hyphens).

name: Object of class character containing the name of the (stable) primary contact person for
this data set; this could be the experimenter, lab head, line manager, . . .

lab: Object of class character containing the laboratory where the experiment was conducted.

contact: Object of class character containing contact information for lab and/or experimenter.

email: Object of class character containing tmail contact information for the primary contact
person (see name above).

instrumentModel: Object of class character indicating the model of the mass spectrometer used
to generate the data.

instrumentManufacturer: Object of class character indicating the manufacturing company of
the mass spectrometer.

instrumentCustomisations: Object of class character describing any significant (i.e. affecting
behaviour) deviations from the manufacturer’s specification for the mass spectrometer.

softwareName: Object of class character with the instrument management and data analysis
package(s) name(s).

softwareVersion: Object of class character with the instrument management and data analysis
package(s) version(s).

switchingCriteria: Object of class character describing the list of conditions that cause the
switch from survey or zoom mode (MS1) to or tandem mode (MSn where n > 1); e.g. ’parent
ion” mass lists, neutral loss criteria and so on [applied for tandem MS only].

isolationWidth: Object of class numeric describing, for tandem instruments, the total width (i.e.
not half for plus-or-minus) of the gate applied around a selected precursor ion m/z, provided
for all levels or by MS level.

parameterFile: Object of class character giving the location and name under which the mass
spectrometer’s parameter settings file for the run is stored, if available. Ideally this should be
a URI+filename, or most preferably an LSID, where feasible.

MIAPE-class 73

ionSource: Object of class character describing the ion source (ESI, MALDI, . . .).
ionSourceDetails: Object of class character describing the relevant details about the ion source.

See MIAPE-MI docuement for more details.
analyser: Object of class character describing the analyzer type (Quadrupole, time-of-flight,

ion trap, . . .).
analyserDetails: Object of class character describing the relevant details about the analyzer.

See MIAPE-MI document for more details.
collisionGas: Object of class character describing the composition of the gas used to fragment

ions in the collision cell.
collisionPressure: Object of class numeric providing the pressure (in bars) of the collision gas.
collisionEnergy: Object of class character specifying for the process of imparting a particular

impetus to ions with a given m/z value, as they travel into the collision cell for fragmentation.
This could be a global figure (e.g. for tandem TOF’s), or a complex function; for example a
gradient (stepped or continuous) of m/z values (for quads) or activation frequencies (for traps)
with associated collision energies (given in eV). Note that collision energies are also provided
for individual "Spectrum2" instances, and is the preferred way of accessing this data.

detectorType: Object of class character describing the type of detector used in the machine
(microchannel plate, channeltron, . . .).

detectorSensitivity: Object of class character giving and appropriate measure of the sensi-
tivity of the described detector (e.g. applied voltage).

Methods

The following methods as in "MIAME":

abstract(MIAPE): An accessor function for abstract.
expinfo(MIAPE): An accessor function for name, lab, contact, title, and url.
notes(MIAPE), notes(MIAPE) <- value: Accessor functions for other. notes(MIAME) <- character

appends character to notes; use notes(MIAPE) <- list to replace the notes entirely.
otherInfo(MIAPE): An accessor function for other.
preproc(MIAPE): An accessor function for preprocessing.
pubMedIds(MIAPE), pubMedIds(MIAME) <- value: Accessor function for pubMedIds.
expemail(MIAPE): An accessor function for email slot.
exptitle(MIAPE): An accessor function for title slot.
analyzer(MIAPE): An accessor function for analyser slot. analyser(MIAPE) is also available.
analyzerDetails(MIAPE): An accessor function for analyserDetails slot. analyserDetails

is also available.
detectorType(MIAPE): An accessor function for detectorType slot.
ionSource(MIAPE): An accessor function for ionSource slot.
ionSourceDetails(MIAPE): An accessor function for ionSourceDetails slot.
instrumentModel(MIAPE): An accessor function for instrumentModel slot.
instrumentManufacturer(MIAPE): An accessor function for instrumentManufacturer slot.
instrumentCustomisations(MIAPE): An accessor function for instrumentCustomisations slot.
as(,"MIAME"): Coerce the object from MIAPE to MIAME class. Used when converting an MSnSet

into an ExpressionSet.

MIAPE-specific methods, including MIAPE-MS meta-data:

show(MIAPE): Displays the experiment data.
msInfo(MIAPE): Displays ’MIAPE-MS’ information.

74 missing-data

Extends

Class "MIAxE", directly. Class "Versioned", by class "MIAxE", distance 2.

Author(s)

Laurent Gatto

References

About MIAPE: http://www.psidev.info/index.php?q=node/91, and references therein, espe-
cially ’Guidelines for reporting the use of mass spectrometry in proteomics’, Nature Biotechnology
26, 860-861 (2008).

missing-data Documenting missing data visualisation

Description

There is a need for adequate handling of missing value impuation in quantitative proteomics. Before
developing a framework to handle missing data imputation optimally, we propose a set of visuali-
sation tools. This document serves as an internal notebook for current progress and ideas that will
eventually materialise in exported functionality in the MSnbase package.

Details

The explore the structure of missing values, we propose to

1. Explore missing values in the frame of the experimental design. The imageNA2 function offers
such a simple visualisation. It is currently limited to 2-group designs/comparisons. In case of time
course experiments or sub-cellular fractionation along a density gradient, we propose to split the
time/gradient into 2 groups (early/late, top/bottom) as a first approximation.

2. Explore the proportion of missing values in each group.

3. Explore the total and group-wise feature intensity distributions.

The existing plotNA function illustrates the completeness/missingness of the data.

Author(s)

Laurent Gatto Samuel Wieczorek and Thomas Burger

See Also

plotNA, imageNA2.

Examples

Other suggestions
library("pRolocdata")
library("pRoloc")
data(dunkley2006)
set.seed(1)
nax <- makeNaData(dunkley2006, pNA = 0.10)
pcol <- factor(ifelse(dunkley2006$fraction <= 5, "A", "B"))

http://www.psidev.info/index.php?q=node/91

MSmap-class 75

sel1 <- pcol == "A"

missing values in each sample
barplot(colSums(is.na(nax)), col = pcol)

table of missing values in proteins
par(mfrow = c(3, 1))
barplot(table(rowSums(is.na(nax))), main = "All")
barplot(table(rowSums(is.na(nax)[sel1,])), main = "Group A")
barplot(table(rowSums(is.na(nax)[!sel1,])), main = "Group B")

fData(nax)$nNA1 <- rowSums(is.na(nax)[, sel1])
fData(nax)$nNA2 <- rowSums(is.na(nax)[, !sel1])
fData(nax)$nNA <- rowSums(is.na(nax))
o <- MSnbase:::imageNA2(nax, pcol)

plot((fData(nax)$nNA1 - fData(nax)$nNA2)[o], type = "l")
grid()

plot(sort(fData(nax)$nNA1 - fData(nax)$nNA2), type = "l")
grid()

o2 <- order(fData(nax)$nNA1 - fData(nax)$nNA2)
MSnbase:::imageNA2(nax, pcol, Rowv=o2)

layout(matrix(c(rep(1, 10), rep(2, 5)), nc = 3))
MSnbase:::imageNA2(nax, pcol, Rowv=o2)
plot((fData(nax)$nNA1 - fData(nax)$nNA)[o2], type = "l", col = "red",

ylim = c(-9, 9), ylab = "")
lines((fData(nax)$nNA - fData(nax)$nNA2)[o2], col = "steelblue")
lines((fData(nax)$nNA1 - fData(nax)$nNA2)[o2], type = "l",

lwd = 2)

MSmap-class Class MSmap

Description

A class to store mass spectrometry data maps, i.e intensities collected along the M/Z and retention
time space during a mass spectrometry acquisition.

Objects from the Class

Objects can be created with the MSmap constructor. The constructor has the following arguments:

object An object created by mzR::openMSfile or an instance of class OnDiskMSnExp. If the latter
contains data from multiple files, a warning will be issued and the first one will be used.

lowMz A numeric of length 1 defining the lower bound of the M/Z range of the MS map.

highMz A numeric of length 1 defining the upper bound of the M/Z range of the MS map.

76 MSmap-class

resMz The resolution along the M/Z range.

hd An optional data.frame as produced by mzR::header(object). If missing, will be computer
within the function. Ignored when object is an OnDiskMSnExp.

zeroIsNA Set 0 intensities to NA. This can be used to clarify the 3 dimensional plot produce by
plot3D.

Slots

call: Object of class "call" - the call used to generate the instance.

map: Object of class "matrix" containing the actual MS map.

mz: Object of class "numeric" with the M/Z sampling bins.

res: Object of class "numeric" storing the the M/Z resolution used to create the map.

rt: Object of class "numeric" with the retention times of the map spectra.

ms: Object of class "numeric" with the MS levels of the spectra.

t: Object of class "logical" indicating if the instance has been transposed.

filename: Object of class "character" specifying the filename of the original raw MS data.

Methods

coerce signature(from = "MSmap", to = "data.frame"): convert the MSmap instance in a data.frame.
Useful for plotting with lattice or ggplot2.

fileName signature(object = "MSmap"): returns the raw data filename.

msLevel signature(object = "MSmap"): returns the MS level of the map spectra.

msMap signature(object = "MSmap"): returns the actual map matrix.

mz signature(object = "MSmap", ...): returns the M/Z values of the map. Additional argu-
ments are currently ignored.

rtime signature(object = "MSmap", ...): returns retention time values of the map. Additional
arguments are currently ignored.

mzRes signature(object = "MSmap"): returns the resolution with which the sample along the
M/Z range was done.

dim signature(x = "MSmap"): returns the dimensions of the map. ncol and nrow return the
number of columns and rows respectively.

t signature(x = "MSmap"): transposes the map.

show signature(object = "MSmap"): prints a summary of the map.

plot signature(x = "MSmap", allTicks = "logical"): produces an image of the map using lattice::levelplot.
By default, allTicks is TRUE and all M/Z and retention times ticks of drawn. If set to FALSE,
only 10 ticks in each dimension are plotted.

plot3D signature(object = "MSmap", rgl = "logical"): produces an three dimensional view
of the map using lattice::cloude(..., type = "h"). If rgl is TRUE, the map is visualised
on a rgl device and can be rotated with the mouse.

Author(s)

Laurent Gatto

MSmap-class 77

Examples

Not run:
downloads the data
library("rpx")
px1 <- PXDataset("PXD000001")
(i <- grep("TMT.+mzML", pxfiles(px1), value = TRUE))
mzf <- pxget(px1, i)

Using an mzRpwiz object
reads the data
ms <- openMSfile(mzf)
hd <- header(ms)

a set of spectra of interest: MS1 spectra eluted
between 30 and 35 minutes retention time
ms1 <- which(hd$msLevel == 1)
rtsel <- hd$retentionTime[ms1] / 60 > 30 &

hd$retentionTime[ms1] / 60 < 35

the map
M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd)

plot(M, aspect = 1, allTicks = FALSE)
plot3D(M)
if (require("rgl") & interactive())

plot3D(M, rgl = TRUE)

With some MS2 spectra
i <- ms1[which(rtsel)][1]
j <- ms1[which(rtsel)][2]
M2 <- MSmap(ms, i:j, 100, 1000, 1, hd)
plot3D(M2)

Using an OnDiskMSnExp object and accessors
msn <- readMSData(mzf, mode = "onDisk")

a set of spectra of interest: MS1 spectra eluted
between 30 and 35 minutes retention time
ms1 <- which(msLevel(msn) == 1)
rtsel <- rtime(msn)[ms1] / 60 > 30 &

rtime(msn)[ms1] / 60 < 35

the map
M3 <- MSmap(msn, ms1[rtsel], 521, 523, .005)
plot(M3, aspect = 1, allTicks = FALSE)

With some MS2 spectra
i <- ms1[which(rtsel)][1]
j <- ms1[which(rtsel)][2]
M4 <- MSmap(msn, i:j, 100, 1000, 1)
plot3D(M4)

End(Not run)

78 MSnbaseOptions

MSnbaseOptions MSnbase options

Description

MSnbase defined a few options globally using the standard R options mechanism. The current
values of these options can be queried with MSnbaseOptions. The options are:

• verbose: defines a session-wide verbosity flag, that is used if the verbose argument in indi-
vidual functions is not set.

• PARALLEL_THRESH: defines the minimum number of spectra per file necessary before using
parallel processing.

• fastLoad: logical(1). If TRUE performs faster data loading for all methods of OnDiskM-
SnExp that load data from the original files (such as spectrapply()). Users experiencing
data I/O errors (observed mostly on macOS systems) should set this option to FALSE.

Usage

MSnbaseOptions()

isMSnbaseVerbose()

setMSnbaseVerbose(opt)

setMSnbaseParallelThresh(opt = 1000)

setMSnbaseFastLoad(opt = TRUE)

isMSnbaseFastLoad()

Arguments

opt The value of the new option

Details

isMSnbaseVerbose is one wrapper for the verbosity flag, also available through options("MSnbase")$verbose.

There are also setters to set options individually. When run without argument, the verbosity setter
inverts the current value of the option.

Value

A list of MSnbase options and the single option values for the individual accessors.

MSnExp-class 79

MSnExp-class The ’MSnExp’ Class for MS Data And Meta-Data

Description

The MSnExp class encapsulates data and meta-data for mass spectrometry experiments, as described
in the slots section. Several data files (currently in mzXML) can be loaded together with the function
readMSData.

This class extends the virtual "pSet" class.

In version 1.19.12, the polarity slot had been added to the "Spectrum" class (previously in
"Spectrum1"). Hence, "MSnExp" objects created prior to this change will not be valid anymore,
since all MS2 spectra will be missing the polarity slot. Object can be appropriately updated using
the updateObject method.

The feature variables in the feature data slot will depend on the file. See also the documentation in
the mzR package that parses the raw data files and produces these data.

Objects from the Class

Objects can be created by calls of the form new("MSnExp",...). However, it is preferred to use
the readMSData function that will read raw mass spectrometry data to generate a valid "MSnExp"
instance.

Slots

assayData: Object of class "environment" containing the MS spectra (see "Spectrum1" and
"Spectrum2"). Slot is inherited from "pSet".

phenoData: Object of class "AnnotatedDataFrame" containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) See phenoData for
more details. Slot is inherited from "pSet".

featureData: Object of class "AnnotatedDataFrame" containing variables describing features
(spectra in our case), e.g. identificaiton data, peptide sequence, identification score,... (inher-
ited from "eSet"). See featureData for more details. Slot is inherited from "pSet".

experimentData: Object of class "MIAPE", containing details of experimental methods. See experimentData
for more details. Slot is inherited from "pSet".

protocolData: Object of class "AnnotatedDataFrame" containing equipment-generated variables
(inherited from "eSet"). See protocolData for more details. Slot is inherited from "pSet".

processingData: Object of class "MSnProcess" that records all processing. Slot is inherited from
"pSet".

.__classVersion__: Object of class "Versions" describing the versions of R, the Biobase pack-
age, "pSet" and MSnExp of the current instance. Slot is inherited from "pSet". Intended for
developer use and debugging (inherited from "eSet").

Extends

Class "pSet", directly. Class "VersionedBiobase", by class "pSet", distance 2. Class "Versioned",
by class "pSet", distance 3.

80 MSnExp-class

Methods

See the "pSet" class for documentation on accessors inherited from pSet, subsetting and general
attribute accession.

bin signature(object = "MSnExp"): Bins spectra. See bin documentation for more details and
examples.

clean signature(object = "MSnExp"): Removes unused 0 intensity data points. See clean doc-
umentation for more details and examples.

compareSpectra signature(x = "Spectrum", y = "missing"): Compares spectra. See compareSpectra
documentation for more details and examples.

extractPrecSpectra signature(object = "MSnExp", prec = "numeric"): extracts spectra with
precursor MZ value equal to prec and returns an object of class ’MSnExp’. See extractPrecSpectra
documentation for more details and examples.

pickPeaks signature(object = "MSnExp"): Performs the peak picking to generate centroided
spectra. Parameter msLevel. allows to restrict peak picking to spectra of certain MS level(s).
See pickPeaks documentation for more details and examples.

estimateNoise signature(object = "MSnExp"): Estimates the noise in all profile spectra of object.
See estimateNoise documentation for more details and examples.

plot signature(x = "MSnExp", y = "missing"): Plots the MSnExp instance. See plot.MSnExp
documentation for more details.

plot2d signature(object = "MSnExp", ...): Plots retention time against precursor MZ for MSnExp
instances. See plot2d documentation for more details.

plotDensity signature(object = "MSnExp", ...): Plots the density of parameters of interest.
instances. See plotDensity documentation for more details.

plotMzDelta signature(object = "MSnExp", ...): Plots a histogram of the m/z difference be-
twee all of the highest peaks of all MS2 spectra of an experiment. See plotMzDelta docu-
mentation for more details.

quantify signature(object = "MSnExp"): Performs quantification for all the MS2 spectra of the
MSnExp instance. See quantify documentation for more details. Also for OnDiskMSnExp
objects.

removePeaks signature(object = "MSnExp"): Removes peaks lower that a threshold t. See
removePeaks documentation for more details and examples.

removeReporters signature(object = "MSnExp", ...): Removes reporter ion peaks from all
MS2 spectra of an experiment. See removeReporters documentation for more details and
examples.

smooth signature(x = "MSnExp"): Smooths spectra. See smooth documentation for more details
and examples.

addIdentificationData signature(object = "MSnExp", ...): Adds identification data to an ex-
periment. See addIdentificationData documentation for more details and examples.

removeNoId signature(object = "MSnExp", fcol = "pepseq", keep = NULL): Removes non-identified
features. See removeNoId documentation for more details and examples.

removeMultipleAssignment signature(object = "MSnExp", fcol = "nprot"): Removes pro-
tein groups (or feature belong to protein groups) with more than one member. The latter is
defined by extracting a feature variable (default is "nprot"). Also removes non-identified
features.

idSummary signature(object = "MSnExp", ...): Prints a summary that lists the percentage of
identified features per file (called coverage).

MSnExp-class 81

show signature(object = "MSnExp"): Displays object content as text.

isolationWindow signature(object = "MSnExp", ...): Returns the isolation window offsets
for the MS2 spectra. See isolationWindow in the mzR package for details.

trimMz signature(object = "MSnExp"): Trims the MZ range of all the spectra of the MSnExp
instance. See trimMz documentation for more details and examples.

isCentroided(object, k = 0.025, qtl = 0.9, verbose = TRUE) A heuristic assessing if the spec-
tra in the object are in profile or centroided mode. The function takes the qtlth quantile top
peaks, then calculates the difference between adjacent M/Z value and returns TRUE if the first
quartile is greater than k. (See MSnbase:::.isCentroided for the code.) If verbose (de-
fault), a table indicating mode for all MS levels is printed.
The function has been tuned to work for MS1 and MS2 spectra and data centroided using
different peak picking algorithms, but false positives can occur. See https://github.com/
lgatto/MSnbase/issues/131 for details. For whole experiments, where all MS1 and MS2
spectra are expected to be in the same, albeit possibly different modes, it is advised to assign
the majority result for MS1 and MS2 spectra, rather than results for individual spectra. See an
example below.

as signature(object = "MSnExp", "data.frame"): Coerces the MSnExp object to a four-column
data.frame with columns "file" (file index in object), "rt" (retention time), "mz" (m/z
values) and "i" (intensity values).

as signature(object = "MSnExp", "MSpectra"): Coerces the MSnExp object to a MSpectra ob-
ject with all feature annotations added as metadata columns (mcols).
Clarifications regarding scan/acquisition numbers and indices:
A spectrumId (or spectrumID) is a vendor specific field in the mzML file that contains
some information about the run/spectrum, e.g.: controllerType=0 controllerNumber=1
scan=5281 file=2.
acquisitionNum is a more a less sanitize spectrum id generated from the spectrumId field by
mzR (see https://github.com/sneumann/mzR/blob/master/src/pwiz/data/msdata/MSData.cpp#L552-
L580).
scanIndex is the mzR generated sequence number of the spectrum in the raw file (which
doesn’t have to be the same as the acquisitionNum).
See also this issue: https://github.com/lgatto/MSnbase/issues/525.

Filtering and subsetting functions:

filterRt signature(object = "MSnExp", rt = "numeric", msLevel. = "numeric"): Retains MS
spectra of level msLevel. with a retention times within rt[1] and rt[2].

filterMsLevel signature(object = "MSnExp", msLevel. = "numeric"): Retains MS spectra of
level msLevel..

filterPolarity signature(object = "MSnExp", polarity. = "numeric"): Retains MS spectra of
polarity polarity..

filterMz signature(object = "MSnExp", mz = "numeric", msLevel. = "numeric"). See filterMz
for details.

filterFile signature(object = "MSnExp", file): Retains MS data of files matching the file in-
dex or file name provided with parameter file.

filterAcquisitionNum

filterEmptySpectra signature(object = "MSnExp"): Remove empty spectra from object (see
isEmpty).

https://github.com/lgatto/MSnbase/issues/131
https://github.com/lgatto/MSnbase/issues/131

82 MSnProcess-class

filterPrecursorScan signature(object = "MSnExp", acquisitionNum = "numeric"): Retain par-
ent (e.g. MS1) and children scans (e.g. MS2) of acquisitionNum. See OnDiskMSnExp for an
example.

splitByFile signature(object = "MSnExp", f = "factor"): split a MSnExp object by file into a
list of MSnExp objects given the grouping in factor f.

filterPrecursorMz signature(object = "MSnExp", mz, ppm = 10): retain spectra with a precur-
sor m/z equal or similar to the one defined with parameter mz. Parameter ppm allows to define
an accepted difference between the provided m/z and the spectrum’s m/z.

filterIsolationWindow signature(object = "MSnExp", mz): retain spectra with isolation win-
dows that contain (which m/z range contain) the specified m/z.

Author(s)

Laurent Gatto

References

Information about the mzXML format as well converters from vendor specific formats to mzXML:
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML.

See Also

"pSet" and readMSData for loading mzXML, mzData or mzML files to generate an instance of MSnExp.

The "OnDiskMSnExp" manual page contains further details and examples.

chromatogram to extract chromatographic data from a MSnExp or OnDiskMSnExp object.

write for the function to write the data to mzML or mzXML file(s).

Examples

mzxmlfile <- dir(system.file("extdata",package="MSnbase"),
pattern="mzXML",full.names=TRUE)

msnexp <- readMSData(mzxmlfile)
msnexp

MSnProcess-class The "MSnProcess" Class

Description

MSnProcess is a container for MSnExp and MSnSet processing information. It records data files,
processing steps, thresholds, analysis methods and times that have been applied to MSnExp or
MSnSet instances.

Slots

files: Object of class "character" storing the raw data files used in experiment described by the
"MSnProcess" instance.

processing: Object of class "character" storing all the processing steps and times.

merged: Object of class "logical" indicating whether spectra have been merged.

http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML

MSnSet-class 83

cleaned: Object of class "logical" indicating whether spectra have been cleaned. See clean for
more details and examples.

removedPeaks: Object of class "character" describing whether peaks have been removed and
which threshold was used. See removePeaks for more details and examples.

smoothed: Object of class "logical" indicating whether spectra have been smoothed.

trimmed: Object of class "numeric" documenting if/how the data has been trimmed.

normalised: Object of class "logical" describing whether and how data have been normalised.

MSnbaseVersion: Object of class "character" indicating the version of MSnbase.

.__classVersion__: Object of class "Versions" indicating the version of the MSnProcess in-
stance. Intended for developer use and debugging.

Extends

Class "Versioned", directly.

Methods

fileNames signature(object = "MSnProcess"): Returns the file names used in experiment de-
scribed by the "MSnProcess" instance.

show signature(object = "MSnProcess"): Displays object content as text.

combine signature(x = "MSnProcess", y = "MSnProcess"): Combines multiple MSnProcess
instances.

Note

This class is likely to be updated using an AnnotatedDataFrame.

Author(s)

Laurent Gatto

See Also

See the "MSnExp" and "MSnSet" classes that actually use MSnProcess as a slot.

Examples

showClass("MSnProcess")

MSnSet-class The "MSnSet" Class for MS Proteomics Expression Data and Meta-
Data

Description

The MSnSet holds quantified expression data for MS proteomics data and the experimental meta-
data. The MSnSet class is derived from the "eSet" class and mimics the "ExpressionSet" class
classically used for microarray data.

84 MSnSet-class

Objects from the Class

The constructor MSnSet(exprs, fData, pData) can be used to create MSnSet instances. Argument
exprs is a matrix and fData and pData must be of class data.frame or "AnnotatedDataFrame"
and all must meet the dimensions and name validity constrains.

Objects can also be created by calls of the form new("MSnSet", exprs, ...). See also "ExpressionSet"
for helpful information. Expression data produced from other softwares can thus make use of
this standardized data container to benefit R and Bioconductor packages. Proteomics expression
data available as spreadsheets, as produced by third-party software such as Proteome Discoverer,
MaxQuant, ... can be imported using the readMSnSet and readMSnSet2 functions.

Coercion methods are also available to transform MSnSet objects to IBSpectra, to data.frame and
to/from ExpressionSet and SummarizedExperiment objects. In the latter case, the metadata avail-
able in the protocolData, experimentData are completely dropped, and only the logging informa-
tion of the processingData slot is retained. All these metadata can be subsequently be added using
the addMSnSetMetadata (see examples below). When converting a SummarizedExperiment to an
MSnSet, the respective metadata slots will be populated if available in the SummarizedExperiment
metadata.

In the frame of the MSnbase package, MSnSet instances can be generated from "MSnExp" experi-
ments using the quantify method).

Slots

qual: Object of class "data.frame" that records peaks data for each of the reporter ions to be used
as quality metrics.

processingData: Object of class "MSnProcess" that records all processing.

assayData: Object of class "assayData" containing a matrix with equal with column number
equal to nrow(phenoData). assayData must contain a matrix exprs with rows represening
features (e.g., reporters ions) and columns representing samples. See the "AssayData" class,
exprs and assayData accessor for more details. This slot in indirectly inherited from "eSet".

phenoData: Object of class "AnnotatedDataFrame" containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) (indireclty inherited
from "eSet"). See phenoData and the "eSet" class for more details. This slot can be accessed
as a data.frame with pData and be replaced by a new valid (i.e. of compatible dimensions
and row names) data.frame with pData()<-.

featureData: Object of class "AnnotatedDataFrame" containing variables describing features
(spectra in our case), e.g. identificaiton data, peptide sequence, identification score,... (inher-
ited indirectly from "eSet"). See featureData and the "eSet" class for more details. This
slot can be accessed as a data.frame with fData and be replaced by a new valid (i.e. of
compatible dimensions and row names) data.frame with fData()<-.

experimentData: Object of class "MIAPE", containing details of experimental methods (inherited
from "eSet"). See experimentData and the "eSet" class for more details.

annotation: not used here.

protocolData: Object of class "AnnotatedDataFrame" containing equipment-generated variables
(inherited indirectly from "eSet"). See protocolData and the "eSet" class for more details.

.__classVersion__: Object of class "Versions" describing the versions of R, the Biobase pack-
age, "eSet", "pSet" and MSnSet of the current instance. Intended for developer use and
debugging (inherited indirectly from "eSet").

MSnSet-class 85

Extends

Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned",
by class "eSet", distance 3.

Methods

MSnSet specific methods or over-riding it’s super-class are described below. See also more "eSet"
for inherited methods.

acquisitionNum acquisitionNum(signature(object = "MSnSet")): Returns the a numeric vec-
tor with acquisition number of each spectrum. The vector names are the corresponding spec-
trum names. The information is extracted from the object’s featureData slot.

fromFile fromFile(signature(object = "MSnSet")): get the index of the file (in fileNames(object))
from which the raw spectra from which the corresponding feature were originally read. The
relevant information is extracted from the object’s featureData slot.
Returns a numeric vector with names corresponding to the spectrum names.

dim signature(x = "MSnSet"): Returns the dimensions of object’s assay data, i.e the number of
samples and the number of features.

fileNames signature(object = "MSnSet"): Access file names in the processingData slot.

msInfo signature(object = "MSnSet"): Prints the MIAPE-MS meta-data stored in the experimentData
slot.

processingData signature(object = "MSnSet"): Access the processingData slot.

show signature(object = "MSnSet"): Displays object content as text.

qual signature(object = "MSnSet"): Access the reporter ion peaks description.

purityCorrect signature(object = "MSnSet", impurities = "matrix"): performs reporter ions
purity correction. See purityCorrect documentation for more details.

normalise signature(object = "MSnSet"): Performs MSnSet normalisation. See normalise for
more details.

t signature(x = "MSnSet"): Returns a transposed MSnSet object where features are now aligned
along columns and samples along rows and the phenoData and featureData slots have been
swapped. The protocolData slot is always dropped.

as(,"ExpressionSet") signature(x = "MSnSet"): Coerce object from MSnSet to ExpressionSet-class.
The experimentData slot is converted to a MIAME instance. It is also possible to coerce an
ExpressionSet to and MSnSet, in which case the experimentData slot is newly initialised.

as(,"IBSpectra") signature(x = "MSnSet"): Coerce object from MSnSet to IBSpectra from the
isobar package.

as(,"data.frame") signature(x = "MSnSet"): Coerce object from MSnSet to data.frame. The
MSnSet is transposed and the PhenoData slot is appended.

as(,"SummarizedExperiment") signature(x = "MSnSet"): Coerce object from MSnSet to SummarizedExperiment.
Only part of the metadata is retained. See addMSnSetMetadata and the example below for
details.

write.exprs signature(x = "MSnSet"): Writes expression values to a tab-separated file (default is
tmp.txt). The fDataCols parameter can be used to specify which featureData columns (as
column names, column number or logical) to append on the right of the expression matrix.
The following arguments are the same as write.table.

combine signature(x = "MSnSet", y = "MSnSet", ...): Combines 2 or more MSnSet instances
according to their feature names. Note that the qual slot and the processing information are
silently dropped.

86 MSnSet-class

topN signature(object = "MSnSet", groupBy, n = 3, fun, ..., verbose = isMSnbaseVerbose()):
Selects the n most intense features (typically peptides or spectra) out of all available for each
set defined by groupBy (typically proteins) and creates a new instance of class MSnSet. If less
than n features are available, all are selected. The ncol(object) features are summerised us-
ing fun (default is sum) prior to be ordered in decreasing order. Additional parameters can be
passed to fun through ..., for instance to control the behaviour of topN in case of NA values.
(Works also with matrix instances.)
See also the nQuants function to retrieve the actual number of retained peptides out of n.
A complete use case using topN and nQuants is detailed in the synapter package vignette.

filterNA signature(object = "MSnSet", pNA = "numeric", pattern = "character", droplevels
= "logical"): This method subsets object by removing features that have (strictly) more
than pNA percent of NA values. Default pNA is 0, which removes any feature that exhibits miss-
ing data. The method can also be used with a character pattern composed of 0 or 1 characters
only. A 0 represent a column/sample that is allowed a missing values, while columns/samples
with and 1 must not have NAs.
This method also accepts matrix instances. droplevels defines whether unused levels in the
feature meta-data ought to be lost. Default is TRUE. See the droplevels method below.
See also the is.na.MSnSet and plotNA methods for missing data exploration.

filterZero signature(object = "MSnSet", pNA = "numeric", pattern = "character", droplevels
= "logical"): As filterNA, but for zeros.

filterMsLevel signature(object = "MSnSet", msLevel. = "numeric", fcol = "character") Keeps
only spectra with level msLevel., as defined by the fcol feature variable (default is "msLevel").

log signature(object = "MSnSet", base = "numeric") Log transforms exprs(object) using
base::log. base (defaults is e='exp(1)') must be a positive or complex number, the base
with respect to which logarithms are computed.

droplevels signature(x = "MSnSet", ...)Drops the unused factor levels in the featureData
slot. See droplevels for details.

impute signature(object = "MSnSet", ...) Performs data imputation on the MSnSet object.
See impute for more details.

trimws signature(object = "MSnSet", ...)Trim leading and/or trailing white spaces in the fea-
ture data slot. Also available for data.frame objects. See ?base::trimws for details.

Additional accessors for the experimental metadata (experimentData slot) are defined. See "MIAPE"
for details.

Plotting

meanSdPlot signature(object = "MSnSet") Plots row standard deviations versus row means.
See meanSdPlot (vsn package) for more details.

image signature(x = "MSnSet", facetBy = "character", sOrderBy = "character", legend =
"character", low = "character", high = "character", fnames = "logical", nmax = "numeric")
Produces an heatmap of expression values in the x object. Simple horizontal facetting is en-
abled by passing a single character as facetBy. Arbitrary facetting can be performed manually
by saving the return value of the method (see example below). Re-ordering of the samples is
possible by providing the name of a phenotypic variable to sOrderBy. The title of the legend
can be set with legend and the colours with the low and high arguments. If any negative
value is detected in the data, the values are considered as log fold-changes and a divergent
colour scale is used. Otherwise, a gradient from low to high is used. To scale the quantitative
data in x prior to plotting, please see the scale method.

MSnSet-class 87

When there are more than nmax (default is 50) features/rows, these are not printed. This
behaviour can be controlled by setting fnames to TRUE (always print) or FALSE (never print).
See examples below.
The code is based on Vlad Petyuk’s vp.misc::image_msnset. The previous version of this
method is still available through the image2 function.

plotNA signature(object = "MSnSet", pNA = "numeric") Plots missing data for an MSnSet in-
stance. pNA is a numeric of length 1 that specifies the percentage of accepted missing data
values per features. This value will be highlighted with a point on the figure, illustrating
the overall percentage of NA values in the full data set and the number of proteins retained.
Default is 1/2. See also plotNA.

MAplot signature(object = "MSnSet", log.it = "logical", base = "numeric", ...) Produces
MA plots (Ratio as a function of average intensity) for the samples in object. If ncol(object)
== 2, then one MA plot is produced using the ma.plot function from the affy package. If
object has more than 2 columns, then mva.pairs. log.it specifies is the data should be
log-transformed (default is TRUE) using base. Further ... arguments will be passed to the
respective functions.

addIdentificationData signature(object = "MSnSet", ...): Adds identification data to a MSnSet
instance. See addIdentificationData documentation for more details and examples.

removeNoId signature(object = "MSnSet", fcol = "pepseq", keep = NULL): Removes non-identified
features. See removeNoId documentation for more details and examples.

removeMultipleAssignment signature(object = "MSnSet", fcol = "nprot"): Removes pro-
tein groups (or feature belong to protein groups) with more than one member. The latter is
defined by extracting a feature variable (default is "nprot"). Also removes non-identified
features.

idSummary signature(object = "MSnSet", ...): Prints a summary that lists the percentage of
identified features per file (called coverage).

Functions

updateFvarLabels signature(object, label, sep) This function updates object’s featureData
variable labels by appending label. By default, label is the variable name and the separator
sep is ..

updateSampleNames signature(object, label, sep) This function updates object’s sample
names by appending label. By default, label is the variable name and the separator sep is
..

updateFeatureNames signature(object, label, sep) This function updates object’s feature
names by appending label. By default, label is the variable name and the separator sep is
..

ms2df signature(x, fcols) Coerces the MSnSet instance to a data.frame. The direction of the
data is retained and the feature variable labels that match fcol are appended to the expression
values. See also as(x, "data.frame") above.

addMSnSetMetadata signature(x, y) When coercing an MSnSet y to a SummarizedExperiment
x with x <- as(y, "SummarizedExperiment"), most of y’s metadata is lost. Only the file
names, the processing log and the MSnbase version from the processingData slots are passed
along. The addMSnSetMetadata function can be used to add the complete processingData,
experimentData and protocolData slots. The downside of this is that MSnbase is now
required to use the SummarizedExperiment object.

Author(s)

Laurent Gatto

88 MSnSet-class

See Also

"eSet", "ExpressionSet" and quantify. MSnSet quantitation values and annotation can be ex-
ported to a file with write.exprs. See readMSnSet to create and MSnSet using data available in a
spreadsheet or data.frame.

Examples

data(msnset)
msnset <- msnset[10:15]

exprs(msnset)[1, c(1, 4)] <- NA
exprs(msnset)[2, c(1, 2)] <- NA
is.na(msnset)
featureNames(filterNA(msnset, pNA = 1/4))
featureNames(filterNA(msnset, pattern = "0110"))

M <- matrix(rnorm(12), 4)
pd <- data.frame(otherpdata = letters[1:3])
fd <- data.frame(otherfdata = letters[1:4])
x0 <- MSnSet(M, fd, pd)
sampleNames(x0)

M <- matrix(rnorm(12), 4)
colnames(M) <- LETTERS[1:3]
rownames(M) <- paste0("id", LETTERS[1:4])
pd <- data.frame(otherpdata = letters[1:3])
rownames(pd) <- colnames(M)
fd <- data.frame(otherfdata = letters[1:4])
rownames(fd) <- rownames(M)
x <- MSnSet(M, fd, pd)
sampleNames(x)

Visualisation

library("pRolocdata")
data(dunkley2006)
image(dunkley2006)
Changing colours
image(dunkley2006, high = "darkgreen")
image(dunkley2006, high = "darkgreen", low = "yellow")
Forcing feature names
image(dunkley2006, fnames = TRUE)
Facetting
image(dunkley2006, facetBy = "replicate")
p <- image(dunkley2006)
library("ggplot2") ## for facet_grid
p + facet_grid(replicate ~ membrane.prep, scales = 'free', space = 'free')
p + facet_grid(markers ~ replicate)
Fold-changes
dd <- dunkley2006
exprs(dd) <- exprs(dd) - 0.25
image(dd)
image(dd, low = "green", high = "red")
Feature names are displayed by default for smaller data
dunkley2006 <- dunkley2006[1:25,]

MSnSetList-class 89

image(dunkley2006)
image(dunkley2006, legend = "hello")

Coercion
if (require("SummarizedExperiment")) {

data(msnset)
se <- as(msnset, "SummarizedExperiment")
metadata(se) ## only logging
se <- addMSnSetMetadata(se, msnset)
metadata(se) ## all metadata
msnset2 <- as(se, "MSnSet")
processingData(msnset2)

}

as(msnset, "ExpressionSet")

MSnSetList-class Storing multiple related MSnSets

Description

A class for storing lists of MSnSet instances.

Details

There are two ways to store different sets of measurements pertaining an experimental unit, such as
replicated measures of different conditions that were recorded over more than one MS acquisition.
Without focusing on any proteomics technology in particular, these multiple assays can be recorded
as

• A single combined MSnSet (see the section Combining MSnSet instances in the MSnbase-
demo section). In such cases, the different experimental (phenotypical) conditions are recorded
as an AnnotatedDataFrame in the phenoData slots.
Quantitative data for features that were missing in an assay are generally encode as missing
with NA values. Alternatively, only features observed in all assays could be selected. See the
commonFeatureNames functions to select only common features among two or more MSnSet
instance.

• Each set of measurements is stored in an MSnSet which are combined into one MSnSetList.
Each MSnSet elements can have identical or different samples and features. Unless compiled
directly manually by the user, one would expect at least one of these dimensions (features/rows
or samples/columns) are conserved (i.e. all feature or samples names are identical). See
split/unsplit below.

Objects from the Class

Objects can be created and manipluated with:

MSnSetList(x, log, featureDAta) The class constructor that takes a list of valid MSnSet in-
stances as input x, an optional logging list, and an optional feature metadata data.frame.

90 MSnSetList-class

split(x, f) An MSnSetList can be created from an MSnSet instance. x is a single MSnSet and f
is a factor or a character of length 1. In the latter case, f will be matched to the feature-
and phenodata variable names (in that order). If a match is found, the respective variable is ex-
tracted, converted to a factor if it is not one already, and used to split x along the features/rows
(f was a feature variable name) or samples/columns (f was a phenotypic variable name). If
f is passed as a factor, its length will be matched to nrow(x) or ncol(x) (in that order) to
determine if x will be split along the features (rows) or sample (columns). Hence, the length
of f must match exactly to either dimension.

unsplit(value, f) The unsplit method reverses the effect of splitting the value MSnSet along
the groups f.

as(x, "MSnSetList") Where x is an instance of class MzTab. See the class documentation for
details.

Slots

x: Object of class list containing valid MSnSet instances. Can be extracted with the msnsets()
accessor.

log: Object of class list containing an object creation log, containing among other elements the
call that generated the object. Can be accessed with objlog().

featureData: Object of class DataFrame that stores metadata for each object in the x slot. The
number of rows of this data.frame must be equal to the number of items in the x slot and
their respective (row)names must be identical.

.__classVersion__: The version of the instance. For development purposes only.

Methods

"[[" Extracts a single MSnSet at position.

"[" Extracts one of more MSnSets as MSnSetList.

length Returns the number of MSnSets.

names Returns the names of MSnSets, if available. The replacement method is also available.

show Display the object by printing a short summary.

lapply(x, FUN, ...) Apply function FUN to each element of the input x. If the application of FUN
returns and MSnSet, then the return value is an MSnSetList, otherwise a list.

sapply(x, FUN, ..., simplify = TRUE, USE.NAMES = TRUE) A lapply wrapper that simplifies
the ouptut to a vector, matric or array is possible. See ?base::sapply for details. .

fData Returns the features metadata featureData slot.

fData<- Features metadata featureData replacement method.

Author(s)

Laurent Gatto

See Also

The commonFeatureNames function to select common features among MSnSet instances.

MSpectra 91

Examples

library("pRolocdata")
data(tan2009r1)
data(tan2009r2)

The MSnSetList class
for an unnamed list, names are set to indices
msnl <- MSnSetList(list(tan2009r1, tan2009r2))
names(msnl)
a named example
msnl <- MSnSetList(list(A = tan2009r1, B = tan2009r2))
names(msnl)
msnsets(msnl)
length(msnl)
objlog(msnl)
msnl[[1]] ## an MSnSet
msnl[1] ## an MSnSetList of length 1

Iterating over the elements
lapply(msnl, dim) ## a list
lapply(msnl, normalise, method = "quantiles") ## an MSnSetList

fData(msnl)
fData(msnl)$X <- sapply(msnl, nrow)
fData(msnl)

Splitting and unsplitting
splitting along the columns/samples
data(dunkley2006)
head(pData(dunkley2006))
(splt <- split(dunkley2006, "replicate"))
lapply(splt, dim) ## the number of rows and columns of the split elements
unsplt <- unsplit(splt, dunkley2006$replicate)
stopifnot(compareMSnSets(dunkley2006, unsplt))

splitting along the rows/features
head(fData(dunkley2006))
(splt <- split(dunkley2006, "markers"))
unsplt <- unsplit(splt, factor(fData(dunkley2006)$markers))
simplify2array(lapply(splt, dim))
stopifnot(compareMSnSets(dunkley2006, unsplt))

MSpectra List of Spectrum objects along with annotations

Description

MSpectra (Mass Spectra) objects allow to collect one or more Spectrum object(s) (Spectrum1 or
Spectrum2) in a list-like structure with the possibility to add arbitrary annotations to each indi-
vidual Spectrum object. These can be accessed/set with the mcols() method.

MSpectra objects can be created with the MSpectra function.

Functions to access the individual spectra’s attributes are available (listed below).

92 MSpectra

writeMgfData exports a MSpectra object to a file in MGF format. All metadata columns present
in mcols are exported as additional fields with the capitalized column names used as field names
(see examples below).

Usage

MSpectra(..., elementMetadata = NULL)

S4 method for signature 'MSpectra'
mz(object)

S4 method for signature 'MSpectra'
intensity(object)

S4 method for signature 'MSpectra'
rtime(object)

S4 method for signature 'MSpectra'
precursorMz(object)

S4 method for signature 'MSpectra'
precursorCharge(object)

S4 method for signature 'MSpectra'
precScanNum(object)

S4 method for signature 'MSpectra'
precursorIntensity(object)

S4 method for signature 'MSpectra'
acquisitionNum(object)

S4 method for signature 'MSpectra'
scanIndex(object)

S4 method for signature 'MSpectra,ANY'
peaksCount(object)

S4 method for signature 'MSpectra'
msLevel(object)

S4 method for signature 'MSpectra'
tic(object)

S4 method for signature 'MSpectra'
ionCount(object)

S4 method for signature 'MSpectra'
collisionEnergy(object)

S4 method for signature 'MSpectra'
fromFile(object)

MSpectra 93

S4 method for signature 'MSpectra'
polarity(object)

S4 method for signature 'MSpectra'
smoothed(object)

S4 method for signature 'MSpectra'
isEmpty(x)

S4 method for signature 'MSpectra'
centroided(object)

S4 method for signature 'MSpectra'
isCentroided(object)

S4 method for signature 'MSpectra'
writeMgfData(object, con = "spectra.mgf", COM = NULL, TITLE = NULL)

S4 method for signature 'MSpectra'
clean(object, all = FALSE, msLevel. = msLevel., ...)

S4 method for signature 'MSpectra'
removePeaks(object, t, msLevel., ...)

S4 method for signature 'MSpectra'
filterMz(object, mz, msLevel., ...)

S4 method for signature 'MSpectra'
pickPeaks(
object,
halfWindowSize = 3L,
method = c("MAD", "SuperSmoother"),
SNR = 0L,
refineMz = c("none", "kNeighbors", "kNeighbours", "descendPeak"),
msLevel. = unique(msLevel(object)),
...

)

S4 method for signature 'MSpectra'
smooth(
x,
method = c("SavitzkyGolay", "MovingAverage"),
halfWindowSize = 2L,
...

)

S4 method for signature 'MSpectra'
filterMsLevel(object, msLevel.)

Arguments

... For MSpectra: Spectrum object(s) or a list of Spectrum objects. For all other
methods optional arguments passed along.

94 MSpectra

elementMetadata

For MSpectra: DataFrame with optional information that should be added as
metadata information (mcols) to the object. The number of rows has to match
the number of Spectrum objects, each row is expected to represent additional
metadata information for one spectrum.

object For all functions: a MSpectra object.

x For all functions: a MSpectra object.

con For writeMgfData: character(1) defining the file name of the MGF file.

COM For writeMgfData: optional character(1) providing a comment to be added
to the file.

TITLE For writeMgfData: optional character(1) defining the title for the MGF file.

all For clean: if FALSE original 0-intensity values are retained around peaks.

msLevel. For clean, removePeaks, filterMz, pickPeaks: optionally specify the MS
level(s) of the spectra on which the operation should be performed. For filterMsLevels:
MS level(s) to which the MSpectra should be reduced.

t For removePeaks: numeric(1) specifying the threshold below which intensities
are set to 0.

mz For filterMz: numeric(2) defining the lower and upper m/z for the filter. See
filterMz() for details.

halfWindowSize For pickPeaks and smooth: see pickPeaks() and smooth() for details.

method For pickPeaks and smooth: see pickPeaks() and smooth() for details.

SNR For pickPeaks: see pickPeaks() for details.

refineMz For pickPeaks: see pickPeaks() for details.

Details

MSpectra inherits all methods from the SimpleList class of the S4Vectors package. This includes
lapply and other data manipulation and subsetting operations.

Constructor

New MSpectra can be created with the MSpectra(...) function where ... can either be a single
Spectrum object or a list of Spectrum objects (Spectrum1 and/or Spectrum2).

Accessing spectrum attributes

These methods allow to access the attributes and values of the individual Spectrum (Spectrum1 or
Spectrum2) objects within the list.

• mz return the m/z values of each spectrum as a list of numeric vectors.

• intensity return the intensity values of each spectrum as a list of numeric vectors.

• rtime return the retention time of each spectrum as a numeric vector with length equal to the
length of object.

• precursorMz, precursorCharge, precursorIntensity, precScanNum return precursor m/z
values, charge, intensity and scan number for each spectrum as a numeric (or integer) vector
with length equal to the length of object. Note that for Spectrum1 objects NA will be returned.

• acquisitionNum and scanIndex return the acquisition number of each spectrum and its scan
index as an integer vector with the same length than object.

MSpectra 95

• ionCount and tic return the ion count and total ion current of each spectrum.

• peaksCount returns the number of peaks for each spectrum as a integer vector.

• msLevel returns the MS level of each spectrum.

• collisionEnergy returns the collision energy for each spectrum or NA for Spectrum1 objects.

• polarity returns the spectra’s polarity.

• fromFile returns the index from the (e.g. mzML) file the spectra where from. This applies
only for spectra read using the readMSData() function.

• smoothed whether spectra have been smoothed (i.e. processed with the smooth() method.
Returns a logical of length equal to the number of spectra.

• isEmpty returns TRUE for spectra without peak data.

• centroided, isCentroided returns for each spectrum whether it contains centroided data.
While centroided returns the internal attribute of each spectrum, isCentroided tries to
guess whether spectra are centroided from the actual peak data.

Data manipulation methods

• clean cleans each spectrum. See clean() for more details.

• pickPeaks performs peak picking to generate centroided spectra. See pickPeaks() for more
details.

• removePeaks removes peaks lower than a threshold t. See removePeaks() for more details.

• smooth smooths spectra. See smooth() for more details.

Filtering and subsetting

• [can be used to subset the MSpectra object.

• filterMsLevel filters MSpectra to retain only spectra from certain MS level(s).

• filterMz filters the spectra by the specified mz range. See filterMz() for details.

Author(s)

Johannes Rainer

Examples

Create from Spectrum objects
sp1 <- new("Spectrum1", mz = c(1, 2, 4), intensity = c(4, 5, 2))
sp2 <- new("Spectrum2", mz = c(1, 2, 3, 4), intensity = c(5, 3, 2, 5),

precursorMz = 2)

spl <- MSpectra(sp1, sp2)
spl
spl[[1]]

Add also metadata columns
mcols(spl)$id <- c("a", "b")
mcols(spl)

Create a MSpectra with metadata
spl <- MSpectra(sp1, sp2, elementMetadata = DataFrame(id = c("a", "b")))

mcols(spl)

96 MSpectra

mcols(spl)$id

Extract the mz values for the individual spectra
mz(spl)

Extract the intensity values for the individual spectra
intensity(spl)

Extract the retention time values for the individual spectra
rtime(spl)

Extract the precursor m/z of each spectrum.
precursorMz(spl)

Extract the precursor charge of each spectrum.
precursorCharge(spl)

Extract the precursor scan number for each spectrum.
precScanNum(spl)

Extract the precursor intensity of each spectrum.
precursorIntensity(spl)

Extract the acquisition number of each spectrum.
acquisitionNum(spl)

Extract the scan index of each spectrum.
scanIndex(spl)

Get the number of peaks per spectrum.
peaksCount(spl)

Get the MS level of each spectrum.
msLevel(spl)

Get the total ion current for each spectrum.
tic(spl)

Get the total ion current for each spectrum.
ionCount(spl)

Extract the collision energy for each spectrum.
collisionEnergy(spl)

Extract the file index for each spectrum.
fromFile(spl)

Get the polarity for each spectrum.
polarity(spl)

Whether spectra are smoothed (i.e. processed with the `smooth`
function).
smoothed(spl)

Are spectra empty (i.e. contain no peak data)?
isEmpty(spl)

MzTab-class 97

Do the spectra contain centroided data?
centroided(spl)

Do the spectra contain centroided data? Whether spectra are centroided
is estimated from the peak data.
isCentroided(spl)

Export the spectrum list to a MGF file. Values in metadata columns are
exported as additional field for each spectrum.
tmpf <- tempfile()
writeMgfData(spl, tmpf)

Evaluate the written output. The ID of each spectrum (defined in the
"id" metadata column) is exported as field "ID".
readLines(tmpf)

Set mcols to NULL to avoid export of additional data fields.
mcols(spl) <- NULL
file.remove(tmpf)

writeMgfData(spl, tmpf)
readLines(tmpf)

Filter the object by MS level
filterMsLevel(spl, msLevel. = 1)

MzTab-class Parse MzTab files

Description

The MzTab class stores the output of a basic parsing of a mzTab file. It contain the metadata (a list),
comments (a character vector), and the at least of of the following data types: proteins, peptides,
PSMs and small molecules (as data.frames).

At this stage, the metadata and data are only minimally parsed. The column names are kept as they
are defined in the original files and are thus not all going to be valid colnames. To access them
using the dollar operator, use backticks. More specific data extraction and preparation are dele-
gated to more specialised functions, such as the as(., to = "MSnSetList") and readMzTabData
for proteomics data.

Note that no attempts are made to verify the validitiy of the mzTab file.

Objects from the Class

Objects can be created by calls the the constructor MzTab that takes a single mzTab file as input.

The objects can subsequently be coerced to MSnSetList instances with as(object, "MSnSetList").
The resulting MSnSetList contains possibly empty MSnSet instances for proteins, peptide and
PSMs, respectively named "Proteins", "Peptides" and "PSMs".

The assaydata slots of the two former are populated with the protein_abundance_assay[1-n] and
peptide_abundance_assay[1-n] columns in the mzTab file. No abundance values are defined for
the latter. The respective feature names correspond to protein accessions, peptide sequences and
PSM identifiers, possibly made unique as by appending sequence numbers to duplicates.

98 MzTab-class

Slots

Metadata: Object of class "list" storing the metadata section.
Filename: Object of class "character" storing the orginal file name.
Proteins: Object of class "data.frame" storing the protein data.
Peptides: Object of class "data.frame" storing the peptide data.
PSMs: Object of class "data.frame" storing the PSM data.
SmallMolecules: Object of class "data.frame" storing the small molecules data.
MoleculeFeatures: Object of class "data.frame" storing the molecule features.
MoleculeEvidence: Object of class "data.frame" storing the molecule evidence.
Comments: Object of class "character" storing the comments that were present in the file.

Accessors

metadata signature(x = "MzTab"): returns the meta data list.
mzTabMode signature(x = "MzTab"): returns the mode (complete or summary) of the mzTab

data. A shortcut for metadata(x)$`mzTab-mode`.
mzTabType signature(x = "MzTab"): returns the type (quantification or identification) of the

mzTab data. A shortcut for metadata(x)$`mzTab-type`.
fileName signature(object = "MzTab"): returns the file name of the original mzTab file.
peptides signature(object = "MzTab"): returns the peptide data.frame.
proteins signature(object = "MzTab"): returns the proteins data.frame.
psms signature(object = "MzTab"): returns the PSMs data.frame.
smallMolecules signature(object = "MzTab"): returns the small molecules (SML) data.frame.
moleculeFeatures signature(object = "MzTab"): returns the small molecules features (SMF)

data.frame.
moleculeEvidence signature(object = "MzTab"): returns the small molecule identification ev-

idence (SME) data.frame.
comments signature(object = "MzTab"): returns the comments.

Author(s)

Laurent Gatto, with contributions from Richard Cotton (see https://github.com/lgatto/MSnbase/
issues/41) and Steffen Neuman (see https://github.com/lgatto/MSnbase/pull/500).

References

The mzTab format is a light-weight, tab-delimited file format for proteomics data. Version mzTab
1.0 is aimed at proteomics, mzTab-M 2.0 was adapted to metabolomics. See https://github.com/HUPO-
PSI/mzTab for details and specifications.

Griss J, Jones AR, Sachsenberg T, Walzer M, Gatto L, Hartler J, Thallinger GG, Salek RM, Stein-
beck C, Neuhauser N, Cox J, Neumann S, Fan J, Reisinger F, Xu QW, Del Toro N, Perez-Riverol
Y, Ghali F, Bandeira N, Xenarios I, Kohlbacher O, Vizcaino JA, Hermjakob H. The mzTab data
exchange format: communicating mass-spectrometry-based proteomics and metabolomics experi-
mental results to a wider audience. Mol Cell Proteomics. 2014 Oct;13(10):2765-75. doi: 10.1074/mcp.O113.036681.
Epub 2014 Jun 30. PubMed PMID: 24980485; PubMed Central PMCID: PMC4189001.

Hoffmann N, Rein J, Sachsenberg T, et al. mzTab-M: A Data Standard for Sharing Quantitative Re-
sults in Mass Spectrometry Metabolomics. Anal Chem. 2019;91(5):3302-3310. doi:10.1021/acs.analchem.8b04310
PubMed PMID: 30688441; PubMed Central PMCID: PMC6660005.

https://github.com/lgatto/MSnbase/issues/41
https://github.com/lgatto/MSnbase/issues/41

naplot 99

Examples

Test files from the mzTab developement repository
fls <- c("Cytidine.mzTab", "MTBLS2.mztab",

"PRIDE_Exp_Complete_Ac_1643.xml-mztab.txt",
"PRIDE_Exp_Complete_Ac_16649.xml-mztab.txt",
"SILAC_CQI.mzTab", "SILAC_SQ.mzTab",
"iTRAQ_CQI.mzTab", "iTRAQ_SQI.mzTab",
"labelfree_CQI.mzTab", "labelfree_SQI.mzTab",
"lipidomics-HFD-LD-study-PL-DG-SM.mzTab",
"lipidomics-HFD-LD-study-TG.mzTab")

baseUrl <- "https://raw.githubusercontent.com/HUPO-PSI/mzTab/master/examples/1_0-Proteomics-Release/"

a list of mzTab objects
mzt <- sapply(file.path(baseUrl, fls), MzTab)
stopifnot(length(mzt) == length(fls))
mzt[[4]]

dim(proteins(mzt[[4]]))
dim(psms(mzt[[4]]))

prots4 <- proteins(mzt[[4]])
class(prots4)
prots4[1:5, 1:4]

naplot Overview of missing value

Description

Visualise missing values as a heatmap and barplots along the samples and features.

Usage

naplot(
object,
verbose = isMSnbaseVerbose(),
reorderRows = TRUE,
reorderColumns = TRUE,
...

)

Arguments

object An object of class MSnSet.

verbose If verbose (default is isMSnbaseVerbose()), print a table of missing values.

reorderRows If reorderRows (default is TRUE) rows are ordered by number of NA.

reorderColumns If reorderColumns (default is TRUE) columns are ordered by number of NA.

... Additional parameters passed to image2.

100 navMS

Value

Used for its side effect. Invisibly returns NULL

Author(s)

Laurent Gatto

Examples

data(naset)
naplot(naset)

navMS Navigate an MSnExp object

Description

Navigate an MSnExp object by moving to the next or previous spectrum.

Usage

navMS(i, object, msLevel, nav = c("nextMS", "prevMS"), ...)

nextMS(...)

prevMS(...)

Arguments

i The name or index of the current spectrum

object The MSnExp object

msLevel The MS level of the next or previous spectrum. If missing (default), then the
level of the current spectrum is used.

nav One of "nextMS" or "prevMS", to obtain the next or previous spectrum of level
msLevel.

... Additional parameters. Currently ignored.

Value

An object of class Spectrum1 or Spectrum2, depending on the value of msLevel or NULL, of no
spectrum is found.

Author(s)

Laurent Gatto

nFeatures 101

Examples

f <- msdata::proteomics(full.names = TRUE, pattern = "MS3")
x <- readMSData(f, centroided. = c(FALSE, TRUE, FALSE), mode = "onDisk")
(sp <- which(msLevel(x) == 3)[2]) ## 2nd MS3 spectrum
x[[sp]] ## curent MS3
MSnbase:::nextMS(sp, x) ## next MS3
MSnbase:::prevMS(sp, x) ## prev MS3
MSnbase:::prevMS(sp, x, 2L) ## prev MS2
MSnbase:::prevMS(sp, x, 1L) ## prev MS1

nFeatures How many features in a group?

Description

This function computes the number of features in the group defined by the feature variable fcol
and appends this information in the feature data of object.

Usage

nFeatures(object, fcol)

Arguments

object An instance of class MSnSet.

fcol Feature variable defining the feature grouping structure.

Value

An updated MSnSet with a new feature variable fcol.nFeatures.

Author(s)

Laurent Gatto

Examples

library(pRolocdata)
data("hyperLOPIT2015ms3r1psm")
hyperLOPIT2015ms3r1psm <- nFeatures(hyperLOPIT2015ms3r1psm,

"Protein.Group.Accessions")
i <- c("Protein.Group.Accessions", "Protein.Group.Accessions.nFeatures")
fData(hyperLOPIT2015ms3r1psm)[1:10, i]

102 normalise-methods

normalise-methods Normalisation of MSnExp, MSnSet and Spectrum objects

Description

The normalise method (also available as normalize) performs basic normalisation on spectra
intensities of single spectra ("Spectrum" or "Spectrum2" objects), whole experiments ("MSnExp"
objects) or quantified expression data ("MSnSet" objects).

Raw spectra and experiments are normalised using max or sum only. For MSMS spectra could be
normalised to their precursor additionally. Each peak intensity is divided by the highest intensity
in the spectrum, the sum of intensities or the intensity of the precursor. These methods aim at
facilitating relative peaks heights between different spectra.

The method parameter for "MSnSet" can be one of sum, max, quantiles, center.mean, center.median,
.median, quantiles.robust or vsn. For sum and max, each feature’s reporter intensity is divided
by the maximum or the sum respectively. These two methods are applied along the features (rows).

center.mean and center.median translate the respective sample (column) intensities according
to the column mean or median. diff.median translates all samples (columns) so that they all
match the grand median. Using quantiles or quantiles.robust applies (robust) quantile nor-
malisation, as implemented in normalize.quantiles and normalize.quantiles.robust of the
preprocessCore package. vsn uses the vsn2 function from the vsn package. Note that the latter
also glog-transforms the intensities. See respective manuals for more details and function argu-
ments.

A scale method, mimicking the base scale method exists for "MSnSet" instances. See ?base::scale
for details.

Arguments

object An object of class "Spectrum", "Spectrum2", "MSnExp" or "MSnSet".

method A character vector of length one that describes how to normalise the object. See
description for details.

... Additional arguments passed to the normalisation function.

Methods

The normalise methods:

signature(object = "MSnSet", method = "character") Normalises the object reporter ions
intensities using method.

signature(object = "MSnExp", method = "character") Normalises the object peak intensi-
ties using method.

signature(object = "Spectrum", method = "character") Normalises the object peak inten-
sities using method.

signature(object = "Spectrum2", method = "character", precursorIntensity) Normalises
the object peak intensities using method. If method == "precursor", precursorIntensity
allows to specify the intensity of the precursor manually.

The scale method:

signature(x = "MSnSet", center = "logical", scale = "logical") See ?base::scale.

normToReference 103

Examples

quantifying full experiment
data(msnset)
msnset.nrm <- normalise(msnset, "quantiles")
msnset.nrm

normToReference Combine peptides into proteins.

Description

This function combines peptides into their proteins by normalising the intensity values to a reference
run/sample for each protein.

Usage

normToReference(
x,
group,
reference = .referenceFractionValues(x = x, group = group)

)

Arguments

x matrix, exprs matrix of an MSnSet object.

group double or factor, grouping variable, i.e. protein accession; has to be of length
equal nrow(x).

reference double, vector of reference values, has to be of the same length as group and
nrow(x).

Details

This function is not intented to be used directly (that’s why it is not exported via NAMESPACE).
Instead the user should use combineFeatures.

The algorithm is described in Nikolovski et al., briefly it works as follows:

1. Find reference run (column) for each protein (grouped rows). We use the run (column) with
the lowest number of NA. If multiple candidates are available we use the one with the highest
intensity. This step is skipped if the user use his own reference vector.

2. For each protein (grouped rows) and each run (column):

(a) Find peptides (grouped rows) shared by the current run (column) and the reference run
(column).

(b) Sum the shared peptides (grouped rows) for the current run (column) and the reference
run (column).

(c) The ratio of the shared peptides (grouped rows) of the current run (column) and the ref-
erence run (column) is the new intensity for the current protein for the current run.

Value

a matrix with one row per protein.

104 npcv

Author(s)

Sebastian Gibb mail@sebastiangibb.de, Pavel Shliaha

References

Nikolovski N, Shliaha PV, Gatto L, Dupree P, Lilley KS. Label-free protein quantification for
plant Golgi protein localization and abundance. Plant Physiol. 2014 Oct;166(2):1033-43. DOI:
10.1104/pp.114.245589. PubMed PMID: 25122472.

See Also

combineFeatures

Examples

library("MSnbase")
data(msnset)

choose the reference run automatically
combineFeatures(msnset, groupBy=fData(msnset)$ProteinAccession)

use a user-given reference
combineFeatures(msnset, groupBy=fData(msnset)$ProteinAccession,
reference=rep(2, 55))

npcv Non-parametric coefficient of variation

Description

Calculates a non-parametric version of the coefficient of variation where the standard deviation is
replaced by the median absolute deviations (see mad for details) and divided by the absolute value
of the mean.

Usage

npcv(x, na.rm = TRUE)

Arguments

x A numeric.

na.rm A logical (default is TRUE indicating whether NA values should be stripped
before the computation of the median absolute deviation and mean.

Details

Note that the mad of a single value is 0 (as opposed to NA for the standard deviation, see example
below).

Value

A numeric.

mailto:mail@sebastiangibb.de

nQuants 105

Author(s)

Laurent Gatto

Examples

set.seed(1)
npcv(rnorm(10))
replicate(10, npcv(rnorm(10)))
npcv(1)
mad(1)
sd(1)

nQuants Count the number of quantitfied features.

Description

This function counts the number of quantified features, i.e non NA quantitation values, for each
group of features for all the samples in an "MSnSet" object. The group of features are defined by a
feature variable names, i.e the name of a column of fData(object).

Usage

nQuants(x, groupBy)

Arguments

x An instance of class "MSnSet".

groupBy An object of class factor defining how to summerise the features. (Note that
this parameter was previously named fcol and referred to a feature variable
label. This has been updated in version 1.19.12 for consistency with other func-
tions.)

Details

This function is typically used after topN and before combineFeatures, when the summerising
function is sum, or any function that does not normalise to the number of features aggregated. In
the former case, sums of features might be the result of 0 (if no feature was quantified) to n (if all
topN’s n features were quantified) features, and one might want to rescale the sums based on the
number of non-NA features effectively summed.

Value

A matrix of dimensions length(levels(groupBy)) by ncol(x)

A matrix of dimensions length(levels(factor(fData(object)[, fcol]))) by ncol(object)
of integers.

Author(s)

Laurent Gatto lg390@cam.ac.uk, Sebastian Gibb mail@sebastiangibb.de

mailto:lg390@cam.ac.uk
mailto:mail@sebastiangibb.de

106 OnDiskMSnExp-class

Examples

data(msnset)
n <- 2
msnset <- topN(msnset, groupBy = fData(msnset)$ProteinAccession, n)
m <- nQuants(msnset, groupBy = fData(msnset)$ProteinAccession)
msnset2 <- combineFeatures(msnset,

groupBy = fData(msnset)$ProteinAccession,
method = sum)

stopifnot(dim(n) == dim(msnset2))
head(exprs(msnset2))
head(exprs(msnset2) * (n/m))

OnDiskMSnExp-class The OnDiskMSnExp Class for MS Data And Meta-Data

Description

Like the MSnExp class, the OnDiskMSnExp class encapsulates data and meta-data for mass spec-
trometry experiments, but does, in contrast to the former, not keep the spectrum data in memory,
but fetches the M/Z and intensity values on demand from the raw files. This results in some in-
stances to a reduced performance, has however the advantage of a much smaller memory footprint.

Details

The OnDiskMSnExp object stores many spectrum related information into the featureData, thus,
some calls, like rtime to retrieve the retention time of the individual scans does not require the
raw data to be read. Only M/Z and intensity values are loaded on-the-fly from the original files.
Extraction of values for individual scans is, for mzML files, very fast. Extraction of the full data
(all spectra) are performed in a per-file parallel processing strategy.

Data manipulations related to spectras’ M/Z or intensity values (e.g. removePeaks or clean) are
(for OnDiskMSnExp objects) not applied immediately, but are stored for later execution into the
spectraProcessingQueue. The manipulations are performed on-the-fly upon data retrieval. Other
manipulations, like removal of individual spectra are applied directly, since the corresponding data
is available in the object’s featureData slot.

Objects from the Class

Objects can be created by calls of the form new("OnDiskMSnExp",...). However, it is preferred to
use the readMSData function with argument backend="disk" that will read raw mass spectrometry
data to generate a valid "OnDiskMSnExp" instance.

Slots

backend: Character string specifying the used backend.

spectraProcessingQueue: list of ProcessingStep objects defining the functions to be applied
on-the-fly to the spectra data (M/Z and intensity duplets).

assayData: Object of class "environment" that is however empty, as no spectrum data is stored.
Slot is inherited from "pSet".

phenoData: Object of class "AnnotatedDataFrame" containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) See phenoData for
more details. Slot is inherited from "pSet".

OnDiskMSnExp-class 107

featureData: Object of class "AnnotatedDataFrame" containing variables describing features
(spectra in our case). See featureData for more details. Slot is inherited from "pSet".

experimentData: Object of class "MIAPE", containing details of experimental methods. See experimentData
for more details. Slot is inherited from "pSet".

protocolData: Object of class "AnnotatedDataFrame" containing equipment-generated variables
(inherited from "eSet"). See protocolData for more details. Slot is inherited from "pSet".

processingData: Object of class "MSnProcess" that records all processing. Slot is inherited from
"pSet".

.__classVersion__: Object of class "Versions" describing the versions of R, the Biobase pack-
age, "pSet" and MSnExp of the current instance. Slot is inherited from "pSet". Intended for
developer use and debugging (inherited from "eSet").

Extends

Class "MSnExp", directly. Class "pSet", by class "MSnExp", distance 3. Class "VersionedBiobase",
by class "pSet", distance 4. Class "Versioned", by class "pSet", distance 5.

Getter/setter methods

(in alphabetical order) See also methods for MSnExp or pSet objects.

[object[i]:subset the OnDiskMSnExp by spectra. i can be a numeric or logical vector specify-
ing to which spectra the data set should be reduced (with i being the index of the spectrum in
the object’s featureData).
The method returns a OnDiskMSnExp object with the data sub-set.

[[object[[i]]: extract s single spectrum from the OnDiskMSnExp object object. Argument i can
be either numeric or character specifying the index or the name of the spectrum in the object
(i.e. in the featureData). The relevant information will be extracted from the corresponding
raw data file.
The method returns a Spectrum1 object.

acquisitionNum acquisitionNum(signature(object="OnDiskMSnExp")): get the acquisition
number of each spectrum in each individual file. The relevant information is extracted from
the object’s featureData slot.
Returns a numeric vector with names corresponding to the spectrum names.

assayData assayData(signature(object = "OnDiskMSnExp")): Extract the full data, i.e. read
all spectra from the original files, apply all processing steps from the spectraProcessingQueue
slot and return the data. Due to the required processing time accessing the full data should be
avoided wherever possible.
Returns an environment.

centroided,centroided<- centroided(signature(object="OnDiskMSnExp", msLevel, = "numeric")):
whether individual spectra are centroided or uncentroided. The relevant information is ex-
tracted from the object’s featureData slot. Returns a logical vector with names correspond-
ing to the spectrum names. Use centroided(object) <- value to update the information,
with value being a logical vector of length equal to the number of spectra in the experiment.

isCentroided(object, k = 0.025, qtl = 0.9, verbose = TRUE) A heuristic assessing if the spec-
tra in the object are in profile or centroided mode. The function takes the qtlth quantile top
peaks, then calculates the difference between adjacent M/Z value and returns TRUE if the first
quartile is greater than k. (See MSnbase:::.isCentroided for the code.) If verbose (de-
fault), a table indicating mode for all MS levels is printed.

108 OnDiskMSnExp-class

The function has been tuned to work for MS1 and MS2 spectra and data centroided using
different peak picking algorithms, but false positives can occur. See https://github.com/
lgatto/MSnbase/issues/131 for details. For whole experiments, where all MS1 and MS2
spectra are expected to be in the same, albeit possibly different modes, it is advised to assign
the majority result for MS1 and MS2 spectra, rather than results for individual spectra.
See also isCentroidedFromFile that accessed the mode directly from the raw data file.

fromFile fromFile(signature(object = "OnDiskMSnExp")): get the index of the file (in fileNames(object))
from which the spectra were read. The relevant information is extracted from the object’s
featureData slot.
Returns a numeric vector with names corresponding to the spectrum names.

intensity intensity(signature(object="OnDiskMSnExp")): return the intensities from each
spectrum in the data set. Intensities are first read from the raw files followed by an optional
processing (depending on the processing steps defined in the spectraProcessingQueue). To
reduce the amount of required memory, this is performed on a per-file basis. The BPPARAM
argument allows to specify how and if parallel processing should be used. Information from
individual files will be processed in parallel (one process per original file).
The method returns a list of numeric intensity values. Each list element represents the
intensities from one spectrum.

ionCount ionCount(signature(object="OnDiskMSnExp",BPPARAM=bpparam())): extract the
ion count (i.e. sum of intensity values) for each spectrum in the data set. The relevant data has
to be extracted from the raw files (with eventually applying processing steps). The BPPARAM
argument can be used to define how and if parallel processing should be used. Information
from individual files will be processed in parallel (one process per original file).
Returns a numeric vector with names corresponding to the spectrum names.

isolationWindowLowerMz isolationWindowLowerMz(object = "OnDiskMSnExp"): return the
lower m/z boundary for the isolation window.
Returns a numeric vector of length equal to the number of spectra with the lower m/z value of
the isolation window or NA if not specified in the original file.

isolationWindowUpperMz isolationWindowUpperMz(object = "OnDiskMSnExp"): return the
upper m/z boundary for the isolation window.
Returns a numeric vector of length equal to the number of spectra with the upper m/z value of
the isolation window or NA if not specified in the original file.

length length(signature(object="OnDiskMSnExp")): Returns the number of spectra of the
current experiment.

msLevel msLevel(signature(object = "OnDiskMSnExp")): extract the MS level from the spec-
tra. The relevant information is extracted from the object’s featureData slot.
Returns a numeric vector with names corresponding to the spectrum names.

mz mz(signature(object="OnDiskMSnExp")): return the M/Z values from each spectrum in the
data set. M/Z values are first read from the raw files followed by an optional processing
(depending on the processing steps defined in the spectraProcessingQueue). To reduce the
amount of required memory, this is performed on a per-file basis. The BPPARAM argument
allows to specify how and if parallel processing should be used. Information from individual
files will be processed in parallel (one process per original file).
The method returns a list of numeric M/Z values. Each list element represents the values
from one spectrum.

peaksCount peaksCount(signature(object="OnDiskMSnExp",scans="numeric"), BPPARAM=bpparam()):
extrac the peaks count from each spectrum in the object. Depending on the eventually present
ProcessingStep objects in the spectraProcessingQueue raw data will be loaded to cal-
culate the peaks count. If no steps are present, the data is extracted from the featureData.

https://github.com/lgatto/MSnbase/issues/131
https://github.com/lgatto/MSnbase/issues/131

OnDiskMSnExp-class 109

Optional argument scans allows to specify the index of specific spectra from which the count
should be returned. The BPPARAM argument can be used to define how and if parallel pro-
cessing should be used. Information from individual files will be processed in parallel (one
process per original file).
Returns a numeric vector with names corresponding to the spectrum names.

polarity polarity(signature(object="OnDiskMSnExp")): returns a numeric vector with the
polarity of the individual spectra in the data set. The relevant information is extracted from
the featureData.

rtime rtime(signature(object="OnDiskMSnExp")): extrac the retention time of the individual
spectra in the data set (from the featureData).
Returns a numeric vector with names corresponding to the spectrum names.

scanIndex scanIndex(signature(object="OnDiskMSnExp")): get the spectra scan indices within
the respective file. The relevant information is extracted from the object’s featureData slot.
Returns a numeric vector of indices with names corresponding to the spectrum names.

smoothed,smoothed<- smoothed(signature(object="OnDiskMSnExp", msLevel. = "numeric")):
whether individual spectra are smoothed or unsmoothed. The relevant information is extracted
from the object’s featureData slot. Returns a logical vector with names corresponding to the
spectrum names. Use smoothed(object) <- value to update the information, with value
being a logical vector of length equal to the number of spectra in the experiment.

spectra spectra(signature(object="OnDiskMSnExp"), BPPARAM=bpparam()): extract spec-
trum data from the individual files. This causes the spectrum data to be read from the original
raw files. After that all processing steps defined in the spectraProcessingQueue are applied
to it. The results are then returned as a list of Spectrum1 objects.
The BPPARAM argument can be used to define how and if parallel processing should be used.
Information from individual files will be processed in parallel (one process per file). Note:
extraction of selected spectra results in a considerable processing speed and should thus be
preferred over whole data extraction.
Returns a list of Spectrum1 objects with names corresponding to the spectrum names.

tic tic(signature(object="OnDiskMSnExp"), initial = TRUE, BPPARAM = bpparam()): get the
total ion current (TIC) of each spectrum in the data set. If initial = TRUE, the information is
extracted from the object’s featureData and represents the tic provided in the header of the
original raw data files. For initial = FALSE, the TIC is calculated from the actual intensity
values in each spectrum after applying all data manipulation methods (if any).
See also https://github.com/lgatto/MSnbase/issues/332 for more details.
BPPARAM parameter: see spectra method above.
Returns a numeric vector with names corresponding to the spectrum names.

bpi bpi(signature(object="OnDiskMSnExp"), initial = TRUE, BPPARAM = bpparam()): get
the base peak intensity (BPI), i.e. the maximum intensity from each spectrum in the data
set. If initial = TRUE, the information is extracted from the object’s featureData and rep-
resents the bpi provided in the header of the original raw data files. For initial = FALSE, the
BPI is calculated from the actual intensity values in each spectrum after applying all eventual
data manipulation methods.
See also https://github.com/lgatto/MSnbase/issues/332 for more details.
BPPARAM parameter: see spectra method above.
Returns a numeric vector with names corresponding to the spectrum names.

featureNames tic(signature(object="OnDiskMSnExp")): return a character of length length(object)
containing the feature names. A replacement method is also available.

110 OnDiskMSnExp-class

spectrapply spectrapply(signature(object = "OnDiskMSnExp"), FUN = NULL,BPPARAM = bpparam(),
...): applies the function FUN to each spectrum passing additional parameters in ... to that
function and return its results. For FUN = NULL it returns the list of spectra (same as a call
to spectra). Parameter BPPARAM allows to specify how and if parallel processing should be
enabled.
Returns a list with the result for each of spectrum.

Data manipulation methods

(in alphabetical order) See also methods for MSnExp or pSet objects. In contrast to the same-named
methods for pSet or MSnExp classes, the actual data manipulation is not performed immediately,
but only on-demand, e.g. when intensity or M/Z values are loaded.

clean clean(signature(object="OnDiskMSnExp"), all=TRUE, verbose=TRUE): add an clean
processing step to the lazy processing queue of the OnDiskMSnExp object. The clean com-
mand will only be executed when spectra information (including M/Z and intensity values) is
requested from the OnDiskMSnExp object. Optional arguments to the methods are all=TRUE
and verbose=TRUE.
The method returns an OnDiskMSnExp object.
For more details see documentation of the clean method.

normalize normalize(signature(object="OnDiskMSnExp"), method=c("max","sum"), ...):
add a normalize processing step to the lazy processing queue of the returned OnDiskMSnExp
object.
The method returns an OnDiskMSnExp object.
For more details see documentation of the normalize method.

removePeaks removePeaks(signature(object="OnDiskMSnExp"), t="min", verbose=TRUE):
add a removePeaks processing step to the lazy processing queue of the returned OnDiskMSnExp
object.
The method returns an OnDiskMSnExp object.
For more details see documentation of the removePeaks method.

trimMz trimMz(signature(object="OnDiskMSnExp", mzlim="numeric"),...): add a trimMz
processing step to the lazy processing queue of the returned OnDiskMSnExp object.
The method returns an OnDiskMSnExp object.
For more details see documentation of the trimMz method.

Other methods and functions

validateOnDiskMSnExp validateOnDiskMSnExp(signature(object = "OnDiskMSnExp")): val-
idates an OnDiskMSnExp object and all of its spectra. In addition to the standard validObject
method, this method reads also all spectra from the original files, applies eventual processing
steps and evaluates their validity.

as(from, "MSnExp") Converts the OnDiskMSnExp object from, to an in-memory MSnExp. Also
available as an S3 method as.MSnExp().

Author(s)

Johannes Rainer <johannes.rainer@eurac.edu>

See Also

pSet, MSnExp, readMSData

OnDiskMSnExp-class 111

Examples

Get some example mzML files
library(msdata)
mzfiles <- c(system.file("microtofq/MM14.mzML", package="msdata"),

system.file("microtofq/MM8.mzML", package="msdata"))
Read the data as an OnDiskMSnExp
odmse <- readMSData(mzfiles, msLevel=1, centroided = TRUE)

Get the length of data, i.e. the total number of spectra.
length(odmse)

Get the MS level
head(msLevel(odmse))

Get the featureData, use fData to return as a data.frame
head(fData(odmse))

Get to know from which file the spectra are
head(fromFile(odmse))

And the file names:
fileNames(odmse)

Scan index and acquisitionNum
head(scanIndex(odmse))
head(acquisitionNum(odmse))

Extract the spectra; the data is retrieved from the raw files.
head(spectra(odmse))

Extracting individual spectra or a subset is much faster.
spectra(odmse[1:50])

Alternatively, we could also subset the whole object by spectra and/or samples:
subs <- odmse[rtime(odmse) >= 2 & rtime(odmse) <= 20,]
fileNames(subs)
rtime(subs)

Extract intensities and M/Z values per spectrum; the methods return a list,
each element representing the values for one spectrum.
ints <- intensity(odmse)
mzs <- mz(odmse)

Return a data.frame with mz and intensity pairs for each spectrum from the
object
res <- spectrapply(odmse, FUN = as, Class = "data.frame")

Calling removePeaks, i.e. setting intensity values below a certain threshold to 0.
Unlike the name suggests, this is not actually removing peaks. Such peaks with a 0
intensity are then removed by the "clean" step.
Also, the manipulations are not applied directly, but put into the "lazy"
processing queue.
odmse <- removePeaks(odmse, t=10000)
odmse <- clean(odmse)

The processing steps are only applied when actual raw data is extracted.

112 OnDiskMSnExp-class

spectra(odmse[1:2])

Get the polarity of the spectra.
head(polarity(odmse))

Get the retention time of all spectra
head(rtime(odmse))

Get the intensities after removePeaks and clean
intsAfter <- intensity(odmse)

head(lengths(ints))
head(lengths(intsAfter))

The same for the M/Z values
mzsAfter <- intensity(odmse)
head(lengths(mzs))
head(lengths(mzsAfter))

Centroided or profile mode
f <- msdata::proteomics(full.names = TRUE,

pattern = "MS3TMT11.mzML")
odmse <- readMSData(f, mode = "onDisk")
validObject(odmse)
odmse[[1]]

table(isCentroidedFromFile(odmse), msLevel(odmse))

centroided status could be set manually
centroided(odmse, msLevel = 1) <- FALSE
centroided(odmse, msLevel = 2) <- TRUE
centroided(odmse, msLevel = 3) <- TRUE

or when reading the data
odmse2 <- readMSData(f, centroided = c(FALSE, TRUE, TRUE),

mode = "onDisk")
table(centroided(odmse), msLevel(odmse))

Filtering precursor scans

head(acquisitionNum(odmse))
head(msLevel(odmse))

Extract all spectra stemming from the first MS1 spectrum
(from1 <- filterPrecursorScan(odmse, 21945))
table(msLevel(from1))

Extract the second sepctrum's parent (MS1) and children (MS3)
spectra
(from2 <- filterPrecursorScan(odmse, 21946))
table(msLevel(from2))

pickPeaks-methods 113

pickPeaks-methods Peak Detection for ’MSnExp’ or ’Spectrum’ instances

Description

This method performs a peak picking on individual spectra (Spectrum instances) or whole experi-
ments (MSnExp instances) to create centroided spectra. For noisy spectra there are currently two dif-
ferent noise estimators available, the Median Absolute Deviation (method = "MAD") and Friedman’s
Super Smoother (method = "SuperSmoother"), as implemented in the MALDIquant::detectPeaks
and MALDIquant::estimateNoise functions respectively.

The method supports also to optionally refine the m/z value of the identified centroids by considering
data points that belong (most likely) to the same mass peak. The m/z value is calculated as an
intensity weighted average of the m/z values within the peak region. How the peak region is defined
depends on the method chosen:

refineMz = "kNeighbors": m/z values (and their respective intensities) of the2 * k closest signals
to the centroid are used in the intensity weighted average calculation. The number of neighboring
signals can be defined with the argument k.

refineMz = "descendPeak": the peak region is defined by descending from the identified cen-
troid/peak on both sides until the measured signal increases again. Within this defined region all
measurements with an intensity of at least signalPercentage of the centroid’s intensity are used
to calculate the refined m/z. By default the descend is stopped when the first signal that is equal
or larger than the last observed one is encountered. Setting stopAtTwo = TRUE, two consecutively
increasing signals are required.

By default (refineMz = "none", simply the m/z of the largest signal (the identified centroid) is
reported. See below for examples.

Methods

signature(x = "MSnExp", halfWindowSize = "integer", method = "character", SNR = "numeric", verbose = "logical", refineMz = "character", ...)
Performs the peak picking for all spectra in an MSnExp instance. method could be "MAD" or
"SuperSmoother". halfWindowSize controls the window size of the peak picking algorithm.
The resulting window size is 2 * halfWindowSize + 1. The size should be nearly (or slightly
larger) the FWHM (full width at half maximum). A local maximum is considered as peak
if its intensity is SNR times larger than the estimated noise. refineMz allows to choose a
method for an optional centroid m/z refinement (see description for more details). Choises are
"none" (default, no m/z refinement), "kNeighbors" and "descendPeak". The arguments ...
are passed to the noise estimator or m/z refinement functions. For the noise estimator func-
tions, currenlty only the method = "SuperSmoother" accepts additional arguments, e.g. span.
Please see supsmu for details. refineMethod = "kNeighbors" supports additional argument
k and refineMethod = "descendPeak" arguments signalPercentage and stopAtTwo. See
description above for more details.
This method displays a progress bar if verbose = TRUE. Returns an MSnExp instance with
centroided spectra.

signature(x = "Spectrum", method = "character", halfWindowSize = "integer", ...) Performs
the peak picking for the spectrum (Spectrum instance). This method is the same as above but
returns a centroided Spectrum instead of an MSnExp object. It has no verbose argument.
Please read the details for the above MSnExp method.

114 plot-methods

Author(s)

Sebastian Gibb <mail@sebastiangibb.de> with contributions from Johannes Rainer.

References

S. Gibb and K. Strimmer. 2012. MALDIquant: a versatile R package for the analysis of mass spec-
trometry data. Bioinformatics 28: 2270-2271. http://strimmerlab.org/software/maldiquant/

See Also

clean, removePeaks smooth, estimateNoise and trimMz for other spectra processing methods.

Examples

sp1 <- new("Spectrum1",
intensity = c(1:6, 5:1),
mz = 1:11,
centroided = FALSE)

sp2 <- pickPeaks(sp1)
intensity(sp2)

data(itraqdata)
itraqdata2 <- pickPeaks(itraqdata)
processingData(itraqdata2)

Examples for refineMz:
ints <- c(5, 3, 2, 3, 1, 2, 4, 6, 8, 11, 4, 7, 5, 2, 1, 0, 1, 0, 1, 1, 1, 0)
mzs <- 1:length(ints)
sp1 <- new("Spectrum1", intensity = ints, mz = mzs, centroided = FALSE)
plot(mz(sp1), intensity(sp1), type = "h")

Without m/z refinement:
sp2 <- pickPeaks(sp1)
points(mz(sp2), intensity(sp2), col = "darkgrey")
Using k = 1, closest signals
sp3 <- pickPeaks(sp1, refineMz = "kNeighbors", k = 1)
points(mz(sp3), intensity(sp3), col = "green", type = "h")

Using descendPeak requiring at least 50% or the centroid's intensity
sp4 <- pickPeaks(sp1, refineMz = "descendPeak", signalPercentage = 50)
points(mz(sp4), intensity(sp4), col = "red", type = "h")

plot-methods Plotting ’MSnExp’ and ’Spectrum’ object(s)

Description

These methods provide the functionality to plot mass spectrometry data provided as MSnExp, OnDiskMSnExp
or Spectrum objects. Most functions plot mass spectra M/Z values against intensities.

Full spectra (using the full parameter) or specific peaks of interest can be plotted using the
reporters parameter. If reporters are specified and full is set to ’TRUE’, a sub-figure of the
reporter ions is inlaid inside the full spectrum.

http://strimmerlab.org/software/maldiquant/

plot-methods 115

If an "MSnExp" is provided as argument, all the spectra are aligned vertically. Experiments can be
subset to extract spectra of interest using the [operator or extractPrecSpectra methods.

Most methods make use the ggplot2 system in which case an object of class ’ggplot’ is returned
invisibly.

If a single "Spectrum2" and a "character" representing a valid peptide sequence are passed as
argument, the expected fragement ions are calculated and matched/annotated on the spectum plot.

Arguments

x Objects of class "Spectrum", "Spectrum2" or "MSnExp" to be plotted.

y Missing, "Spectrum" or "character".

reporters An object of class "ReporterIons" that defines the peaks to be plotted. If not
specified, full must be set to ’TRUE’.

full Logical indicating whether full spectrum (respectively spectra) of only reporter
ions of interest should be plotted. Default is ’FALSE’, in which case reporters
must be defined.

centroided. Logical indicating if spectrum or spectra are in centroided mode, in which case
peaks are plotted as histograms, rather than curves.

plot Logical specifying whether plot should be printed to current device. Default is
’TRUE’.

w1 Width of sticks for full centroided spectra. Default is to use maximum MZ value
divided by 500.

w2 Width of histogram bars for centroided reporter ions plots. Default is 0.01.

See below for more details.

Methods

plot(signature(x = "MSnExp", y = "missing"), type = c("spectra", "XIC"), reporters = "ReporterIons", full = "logical", plot = "logical", ...)
For type = "spectra": Plots all the spectra in the MSnExp object vertically. One of reporters
must be defined or full set to ’TRUE’. In case of MSnExp objects, repoter ions are not inlaid
when full is ’TRUE’.
For type = "XIC": Plots a combined plot of retention time against m/z values and retention
time against largest signal per spectrum for each file. Data points are colored by intensity. The
lower part of the plot represents the location of the individual signals in the retention time -
m/z space, the upper part the base peak chromatogram of the data (i.e. the largest signal for
each spectrum). This plot type is restricted to MS level 1 data and is most useful for LC-MS
data. Ideally, the MSnExp (or OnDiskMSnExp) object should be filtered first using the filterRt
and filterMz functions to narrow on an ion of interest. See examples below. This plot uses
base R plotting. Additional arguments to the plot function can be passed with
Additional arguments for type = "XIC" are:

col color for the border of the points. Defaults to col = "grey".
colramp color function/ramp to be used for the intensity-dependent background color of data

points. Defaults to colramp = topo.colors.
grid.color color for the grid lines. Defaults to grid.color = "lightgrey"; use grid.color

= NA to disable grid lines altogether.
pch point character. Defaults to pch = 21.
... additional parameters for the low-level plot function.

116 plot.Spectrum.Spectrum-methods

plot(signature(x = "Spectrum", y = "missing"), reporters = "ReporterIons", full = "logical", centroided. = "logical", plot = "logical", w1, w2)
Displays the MZs against intensities of the Spectrum object as a line plot. At least one of
reporters being defined or full set to ’TRUE’ is required. reporters and full are used
only for "Spectrum2" objects. Full "Spectrum1" spectra are plotted by default.

plot(signature(x = "Spectrum2", y = "character"), orientation = "numeric", add = "logical", col = "character", pch, xlab = "character", ylab = "character", xlim = "numeric", ylim = "numeric", tolerance = "numeric", relative = "logical", type = "character", modifications = "numeric", x = "numeric", fragments = "data.frame", fragments.cex = "numeric", ...)
Plots a single MS2 spectrum and annotates the fragment ions based on the matching between
the peaks in x and the fragment peaks calculated from the peptide sequence y. The default val-
ues are orientation=1, add=FALSE, col="#74ADD1", pch=NA, xlab="m/z", ylab="intensity",
ylim=c(0, 1), tolerance=25e-6, relative=TRUE, type=c("b", "y"), modifications=c(C=160.030649),
z=1, fragments=MSnbase:::calculateFragments_Spectrum2 and fragments.cex=0.75.
Additional arguments ... are passed to plot.default.

Author(s)

Laurent Gatto, Johannes Rainer and Sebastian Gibb

See Also

calculateFragments to calculate ions produced by fragmentation and plot.Spectrum.Spectrum
to plot and compare 2 spectra and their shared peaks.

Chromatogram for plotting of chromatographic data.

Examples

data(itraqdata)
plotting experiments
plot(itraqdata[1:2], reporters = iTRAQ4)
plot(itraqdata[1:2], full = TRUE)
plotting spectra
plot(itraqdata[[1]],reporters = iTRAQ4, full = TRUE)

itraqdata2 <- pickPeaks(itraqdata)
i <- 14
s <- as.character(fData(itraqdata2)[i, "PeptideSequence"])
plot(itraqdata2[[i]], s, main = s)

Load profile-mode LC-MS files
library(msdata)
od <- readMSData(dir(system.file("sciex", package = "msdata"),

full.names = TRUE), mode = "onDisk")
Restrict the MS data to signal for serine
serine <- filterMz(filterRt(od, rt = c(175, 190)), mz = c(106.04, 106.06))
plot(serine, type = "XIC")

Same plot but using heat.colors, rectangles and no point border
plot(serine, type = "XIC", pch = 22, colramp = heat.colors, col = NA)

plot.Spectrum.Spectrum-methods

Plotting a ’Spectrum’ vs another ’Spectrum’ object.

plot.Spectrum.Spectrum-methods 117

Description

These method plot mass spectra MZ values against the intensities as line plots. The first spectrum
is plotted in the upper panel and the other in upside down in the lower panel. Common peaks are
drawn in a slightly darker colour. If a peptide sequence is provided it automatically calculates and
labels the fragments.

Arguments

x Object of class "Spectrum" .

y Object of class "Spectrum" .

... Further arguments passed to internal functions.

Methods

signature(x = "Spectrum", y = "Spectrum", ...) Plots two spectra against each other. Com-
mon peaks are drawn in a slightly darker colour. The ... arguments are passed to the internal
functions. Currently tolerance, relative, sequences and most of the plot.default ar-
guments (like xlim, ylim, main, xlab, ylab, . . .) are supported. You could change the
tolerance (default 25e-6) and decide whether this tolerance should be applied relative (de-
fault relative = TRUE) or absolute (relative = FALSE) to find and colour common peaks.
Use a character vector of length 2 to provide sequences which would be used to cal-
culate and draw the corresponding fragments. If sequences are given the type argument
(default: type=c("b", "y") specify the fragment types which should calculated. Also it is
possible to allow some modifications. Therefore you have to apply a named character
vector for modifications where the name corresponds to the one-letter-code of the mod-
ified amino acid (default: Carbamidomethyl modifications=c(C=57.02146)). Additional
you can specifiy the type of neutralLoss (default: PSMatch::defaultNeutralLoss()). See
calculateFragments for details.
There are a lot of graphical arguments available to control the representation of the peaks and
fragments. Use peaks.pch to set the character on top of the peaks (default: peaks.pch=19).
In a similar way you can set the line width peaks.lwd=1 and the magnification peaks.cex=0.5
of the peaks. The size of the fragment/legend labels could be set using fragments.cex=0.75
or legend.cex respectively. See par for details about graphical parameters in general.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

More spectrum plotting available in plot.Spectrum.

More details about fragment calculation: calculateFragments.

Examples

find path to a mzXML file
file <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "mzXML$")

create basic MSnExp
msexp <- readMSData(file, centroided.=FALSE)

centroid them

118 plot2d-methods

msexp <- pickPeaks(msexp)

plot the first against the second spectrum
plot(msexp[[1]], msexp[[2]])

add sequence information
plot(msexp[[1]], msexp[[2]], sequences=c("VESITARHGEVLQLRPK",

"IDGQWVTHQWLKK"))

itraqdata2 <- pickPeaks(itraqdata)
(k <- which(fData(itraqdata2)[, "PeptideSequence"] == "TAGIQIVADDLTVTNPK"))
mzk <- precursorMz(itraqdata2)[k]
zk <- precursorCharge(itraqdata2)[k]
mzk * zk
plot(itraqdata2[[k[1]]], itraqdata2[[k[2]]])

plot2d-methods The ’plot2d’ method for ’MSnExp’ quality assessment

Description

These methods plot the retention time vs. precursor MZ for the whole "MSnExp" experiment. In-
dividual dots will be colour-coded to describe individual spectra’s peaks count, total ion count,
precursor charge (MS2 only) or file of origin.

The methods make use the ggplot2 system. An object of class ’ggplot’ is returned invisibly.

Arguments

object An object of class "MSnExp" or a data.frame. In the latter case, the data frame
must have numerical columns named ’retention.time’ and ’precursor.mz’ and
one of ’tic’, ’file’, ’peaks.count’ or ’charge’, depending on the z parameter. Such
a data frame is typically generated using the header method on "MSnExp" ob-
ject.

z A character indicating according to what variable to colour the dots. One of, pos-
sibly abreviated, "ionCount" (total ion count), "file" (raw data file), "peaks.count"
(peaks count) or "charge" (precursor charge).

alpha Numeric [0,1] indicating transparence level of points.

plot A logical indicating whether the plot should be printed (default is ’TRUE’).

Methods

signature(object = "MSnExp", ...) Plots a ’MSnExp’ summary.

signature(object = "data.frame", ...) Plots a summary of the ’MSnExp’ experiment de-
scribed by the data frame.

Author(s)

Laurent Gatto

plotDensity-methods 119

See Also

The plotDensity and plotMzDelta methods for other QC plots.

Examples

itraqdata
plot2d(itraqdata,z="ionCount")
plot2d(itraqdata,z="peaks.count")
plot2d(itraqdata,z="charge")

plotDensity-methods The ’plotDensity’ method for ’MSnExp’ quality assessment

Description

These methods plot the distribution of several parameters of interest for the different precursor
charges for "MSnExp" experiment.

The methods make use the ggplot2 system. An object of class ’ggplot’ is returned invisibly.

Arguments

object An object of class "MSnExp" or and ’data.frame’. In the latter case, the data
frame must have numerical columns named ’charge’ and one of ’precursor.mz’,
’peaks.count’ or ’ionCount’, depending on the z parameter. Such a data frame
is typically generated using the header method on "MSnExp" object.

z A character indicating which parameter’s densitiy to plot. One of, possibly
abreviated, "ionCount" (total ion count), "peaks.count" (peaks count) or "pre-
cursor.mz" (precursor MZ).

log Logical, whether to log transform the data (default is ’FALSE’).

plot A logical indicating whether the plot should be printed (default is ’TRUE’).

Methods

signature(object = "MSnExp", ...) Plots a ’MSnExp’ summary.

signature(object = "data.frame", ...) Plots a summary of the ’MSnExp’ experiment de-
scribed by the data frame.

Author(s)

Laurent Gatto

See Also

The plot2d and plotDensity methods for other QC plots.

Examples

itraqdata
plotDensity(itraqdata,z="ionCount")
plotDensity(itraqdata,z="peaks.count")
plotDensity(itraqdata,z="precursor.mz")

120 plotMzDelta-methods

plotMzDelta-methods The delta m/z plot

Description

The m/z delta plot illustrates the suitability of MS2 spectra for identification by plotting the m/z
differences of the most intense peaks. The resulting histogram should optimally shown outstanding
bars at amino acid residu masses. The plots have been described in Foster et al 2011.

Only a certain percentage of most intense MS2 peaks are taken into account to use the most sig-
nificant signal. Default value is 10% (see percentage argument). The difference between peaks
is then computed for all individual spectra and their distribution is plotted as a histogram where
single bars represent 1 m/z differences. Delta m/z between 40 and 200 are plotted by default, to
encompass the residue masses of all amino acids and several common contaminants, although this
can be changes with the xlim argument.

In addition to the processing described above, isobaric reporter tag peaks (see the reporters ar-
gument) and the precursor peak (see the precMz argument) can also be removed from the MS2
spectrum, to avoid interence with the fragment peaks.

Note that figures in Foster et al 2011 have been produced and optimised for centroided data. Appli-
cation of the plot as is for data in profile mode has not been tested thoroughly, although the example
below suggest that it might work.

The methods make use the ggplot2 system. An object of class ggplot is returned invisibly.

Most of the code for plotMzDelta has kindly been contributed by Guangchuang Yu.

Arguments

object An object of class MSnExp or mzRramp (from the mzR package) containing MS2
spectra.

reporters An object of class class "ReporterIons" that defines which reporter ion peaks
to set to 0. The default value NULL leaves the spectra as they are.

subset A numeric between 0 and 1 to use a subset of object’s MS2 spectra.

percentage The percentage of most intense peaks to be used for the plot. Default is 0.1.

precMz A numeric of length one or NULL default. In the latter (and preferred) case, the
precursor m/z values are extracted from the individual MS2 spectra using the
precursorMz method.

precMzWidth A numeric of length 1 that specifies the width around the precursor m/z where
peaks are set to 0. Default is 2.

bw A numeric specifying the bandwith to be used to bin the delta m/z value to plot
the histogram. Default if 1. See geom_histogram for more details.

xlim A numeric of length 2 specifying the range of delta m/z to plot on the histogram.
Default is c(40,200).

withLabels A logical defining if amino acid residue labels are plotted on the figure. De-
fault is TRUE.

size A numeric of length 1 specifying the font size of amino acids lables. Default is
2.5.

plot A logical of length 1 that defines whether the figure should be plotted on the
active device. Default is TRUE. Note that the ggplot object is always returned
invisibly.

plotNA-methods 121

verbose A logical of length 1 specifying whether textual output and a progress bar
illustration the progress of data processing should be printed. Default is TRUE

Methods

signature(object = "MSnExp", ...) Plots and (invisibly) returns the m/z delta histogram.

Author(s)

Laurent Gatto and Guangchuang Yu

References

Foster JM, Degroeve S, Gatto L, Visser M, Wang R, Griss J, Apweiler R, Martens L. "A pos-
teriori quality control for the curation and reuse of public proteomics data." Proteomics, 2011
Jun;11(11):2182-94. doi:10.1002/pmic.201000602. Epub 2011 May 2. PMID: 21538885

See Also

The plotDensity and plot2d methods for other QC plots.

Examples

mzdplot <- plotMzDelta(itraqdata,
subset = 0.5,
reporters = iTRAQ4,
verbose = FALSE, plot = FALSE)

let's retrieve peptide sequence information
and get a table of amino acids
peps <- as.character(fData(itraqdata)$PeptideSequence)
aas <- unlist(strsplit(peps,""))
table of aas
table(aas)
mzDelta plot
print(mzdplot)

plotNA-methods Exploring missing data in ’MSnSet’ instances

Description

These methods produce plots that illustrate missing data.

is.na returns the expression matrix of it MSnSet argument as a matrix of logicals referring whether
the corresponding cells are NA or not. It is generally used in conjunction with table and image (see
example below).

The plotNA method produces plots that illustrate missing data. The completeness of the full dataset
or a set of proteins (ordered by increasing NA content along the x axis) is represented. The methods
make use the ggplot2 system. An object of class ’ggplot’ is returned invisibly.

122 precSelection

Methods

is.na signature(x = "MSnSet") Returns the a matrix of logicals of dimensions dim(x) specifiying
if respective values are missing in the MSnSet’s expression matrix.

plotNA signature(object = "MSnSet", pNA = "numeric") Plots missing data for an MSnSet in-
stance. pNA is a numeric of length 1 that specifies the percentage of accepted missing data
values per features. This value will be highlighted with a point on the figure, illustrating
the overall percentage of NA values in the full data set and the number of proteins retained.
Default is 1/2.

Author(s)

Laurent Gatto

See Also

See also the filterNA method to filter out features with a specified proportion if missing values.

Examples

data(msnset)
exprs(msnset)[sample(prod(dim(msnset)), 120)] <- NA

head(is.na(msnset))
table(is.na(msnset))
image(msnset)

plotNA(msnset, pNA = 1/4)

precSelection Number of precursor selection events

Description

precSelection computes the number of selection events each precursor ions has undergone in
an tandem MS experiment. This will be a function of amount of peptide loaded, chromatography
efficiency, exclusion time,... and is useful when optimising and experimental setup. This function
returns a named integer vector or length equal to the number of unique precursor MZ values in the
original experiment. See n parameter to set the number of MZ significant decimals.

precSelectionTable is a wrapper around precSelection and returns a table with the number of
single, 2-fold, ... selection events.

Usage

precSelection(object,n)

Arguments

object An instane of class "MSnExp".

n The number of decimal places to round the precursor MZ to. Is passed to the
round function.

ProcessingStep-class 123

Value

A named integer in case of precSelection and a table for precSelectionTable.

Author(s)

Laurent Gatto

Examples

precSelection(itraqdata)
precSelection(itraqdata,n=2)
precSelectionTable(itraqdata)
only single selection event in this reduced exeriment

ProcessingStep-class Simple processing step class

Description

The ProcessingStep class is a simple object to encapsule all relevant information of a data analysis
processing step, i.e. the function name and all arguments.

Details

Objects of this class are mainly used to record all possible processing steps of an OnDiskMSnExp
object for later lazy execution.

Objects from the Class

Objects can be created by calls of the form new("ProcessingStep",...) or using the ProcessingStep
constructor function.

Slots

FUN: The function name to be executed as a character string.

ARGS: A named list with all arguments to the function.

Methods and functions

executeProcessingStep(object, ...) Execute the processing step object. Internally this calls do.call
passing all arguments defined in the ProcessingStep object along with potential additional
arguments in ... to the function object@FUN.

Extends

Class "Versioned", directly.

Author(s)

Johannes Rainer <johannes.rainer@eurac.edu>

124 pSet-class

See Also

OnDiskMSnExp

Examples

Define a simple ProcessingStep
procS <- ProcessingStep("sum", list(c(1, 3, NA, 5), na.rm= TRUE))

executeProcessingStep(procS)

pSet-class Class to Contain Raw Mass-Spectrometry Assays and Experimental
Metadata

Description

Container for high-throughput mass-spectrometry assays and experimental metadata. This class
is based on Biobase’s "eSet" virtual class, with the notable exception that ’assayData’ slot is an
environment contain objects of class "Spectrum".

Objects from the Class

A virtual Class: No objects may be created from it. See "MSnExp" for instantiatable sub-classes.

Slots

assayData: Object of class "environment" containing the MS spectra (see "Spectrum1" and
"Spectrum2").

phenoData: Object of class "AnnotatedDataFrame" containing experimenter-supplied variables
describing sample (i.e the individual tags for an labelled MS experiment) See phenoData for
more details.

featureData: Object of class "AnnotatedDataFrame" containing variables describing features
(spectra in our case), e.g. identificaiton data, peptide sequence, identification score,... (inher-
ited from "eSet"). See featureData for more details.

experimentData: Object of class "MIAPE", containing details of experimental methods. See experimentData
for more details.

protocolData: Object of class "AnnotatedDataFrame" containing equipment-generated variables
(inherited from "eSet"). See protocolData for more details.

processingData: Object of class "MSnProcess" that records all processing.

.cache: Object of class environment used to cache data. Under development.

.__classVersion__: Object of class "Versions" describing the versions of the class.

Extends

Class "VersionedBiobase", directly. Class "Versioned", by class "VersionedBiobase", distance
2.

pSet-class 125

Methods

Methods defined in derived classes may override the methods described here.

[signature(x = "pSet"): Subset current object and return object of same class.

[[signature(x = "pSet"): Direct access to individual spectra.

$ signature(x = "pSet"): directly access a specific sample annotation column from the pData.

$<- signature(x = "pSet"): replace or add a sample annotation column in the pData.

abstract Access abstract in experimentData.

assayData signature(object = "pSet"): Access the assayData slot. Returns an environment.

desciption signature(x = "pSet"): Synonymous with experimentData.

dim signature(x = "pSet"): Returns the dimensions of the phenoData slot.

experimentData signature(x = "pSet"): Access details of experimental methods.

featureData signature(x = "pSet"): Access the featureData slot.

fData signature(x = "pSet"): Access feature data information.

featureNames signature(x = "pSet"): Coordinate access of feature names (e.g spectra, peptides
or proteins) in assayData slot.

fileNames signature(object = "pSet"): Access file names in the processingData slot.

fromFile signature(object = "pSet"): Access raw data file indexes (to be found in the processingData
slot) from which the individual object’s spectra where read from.

centroided signature(object = "pSet"): Indicates whether individual spectra are centroided
(’TRUE’) of uncentroided (’FALSE’). Use centroided(object) <- value to update a whole
experiment, ensuring that object and value have the same length.

smoothed signature(object = "pSet"): Indicates whether individual spectra are smoothed (’TRUE’)
of unsmoothed (’FALSE’). Use smoothed(object) <- value to update a whole experiment,
ensuring that object and value have the same length.

fvarMetadata signature(x = "pSet"): Access metadata describing features reported in fData.

fvarLabels signature(x = "pSet"): Access variable labels in featureData.

length signature(x = "pSet"): Returns the number of features in the assayData slot.

notes signature(x = "pSet"): Retrieve and unstructured notes associated with pSet in the experimentData
slot.

pData signature(x = "pSet"): Access sample data information.

pData<- signature(x = "pSet", value): Replace sample data information with value, value
being a data.frame.

phenoData signature(x = "pSet"): Access the phenoData slot.

phenoData<- signature(x = "pSet", value): Replace sample data information with value. value
can be a data.frame or an AnnotatedDataFrame.

processingData signature(object = "pSet"): Access the processingData slot.

protocolData signature(x = "pSet"): Access the protocolData slot.

pubMedIds signature(x = "pSet"): Access PMIDs in experimentData.

sampleNames signature(x = "pSet"): Access sample names in phenoData. A replacement
method is also available.

spectra signature(x = "pSet", ...): Access the assayData slot, returning the features as a
list. Additional arguments are currently ignored.

126 pSet-class

varMetadata signature(x = "pSet"): Access metadata describing variables reported in pData.

varLabels signature(x = "pSet"): Access variable labels in phenoData.

acquisitionNum signature(object = "pSet"): Accessor for spectra acquisition numbers.

scanIndex signature(object = "pSet"): Accessor for spectra scan indices.

collisionEnergy signature(object = "pSet"): Accessor for MS2 spectra collision energies.

intensity signature(object = "pSet", ...): Accessor for spectra instenities, returned as named
list. Additional arguments are currently ignored.

msInfo signature(object = "pSet"): Prints the MIAPE-MS meta-data stored in the experimentData
slot.

msLevel signature(object = "pSet"): Accessor for spectra MS levels.

mz signature(object = "pSet", ...): Accessor for spectra M/Z values, returned as a named
list. Additional arguments are currently ignored.

peaksCount signature(object = "pSet"): Accessor for spectra preak counts.

peaksCount signature(object = "pSet", scans = "numeric"): Accessor to scans spectra preak
counts.

polarity signature(object = "pSet"): Accessor for MS1 spectra polarities.

precursorCharge signature(object = "pSet"): Accessor for MS2 precursor charges.

precursorIntensity signature(object = "pSet"): Accessor for MS2 precursor intensity.

precursorMz signature(object = "pSet"): Accessor for MS2 precursor M/Z values.

precAcquisitionNum signature(object = "pSet"): Accessor for MS2 precursor scan numbers.

precScanNum see precAcquisitionNum.

rtime signature(object = "pSet", ...): Accessor for spectra retention times. Additional ar-
guments are currently ignored.

tic signature(object = "pSet", ...): Accessor for spectra total ion counts. Additional argu-
ments are currently ignored.

ionCount signature(object = "pSet"): Accessor for spectra total ion current.

header signature(object = "pSet"): Returns a data frame containing all available spectra pa-
rameters (MSn only).

header signature(object = "pSet", scans = "numeric"): Returns a data frame containing scans
spectra parameters (MSn only).

spectrapply spectrapply(signature(object = "pSet"), FUN = NULL, BPPARAM = bpparam(), ...):
applies the function FUN to each spectrum passing additional parameters in ... to that function
and return its results. For FUN = NULL it returns the list of spectra (same as a call to spectra).
Parameter BPPARAM allows to specify how and if parallel processing should be enabled.
Returns a list with the result for each of spectrum.

isolationWindowLowerMz isolationWindowLowerMz(object = "pSet"): return the lower m/z
boundary for the isolation window. Note that this method is at present only available for
OnDiskMSnExp objects.

isolationWindowUpperMz isolationWindowUpperMz(object = "pSet"): return the upper m/z
boundary for the isolation window. Note that this method is at present only available for
OnDiskMSnExp objects.

Additional accessors for the experimental metadata (experimentData slot) are defined. See "MIAPE"
for details.

purityCorrect-methods 127

Author(s)

Laurent Gatto

References

The "eSet" class, on which pSet is based.

See Also

"MSnExp" for an instantiatable application of pSet.

Examples

showClass("pSet")

purityCorrect-methods Performs reporter ions purity correction

Description

Manufacturers sometimes provide purity correction values indicating the percentages of each re-
porter ion that have masses differing by +/- n Da from the nominal reporter ion mass due to isotopic
variants. This correction is generally applied after reporter peaks quantitation.

Purity correction here is applied using solve from the base package using the purity correction
values as coefficient of the linear system and the reporter quantities as the right-hand side of the
linear system. ’NA’ values are ignored and negative intensities after correction are also set to ’NA’.

A more elaborated purity correction method is described in Shadforth et al., i-Tracker: for quanti-
tative proteomics using iTRAQ. BMC Genomics. 2005 Oct 20;6:145. (PMID 16242023).

Function makeImpuritiesMatrix(x, filename, edit = TRUE) helps the user to create such a ma-
trix. The function can be used in two ways. If given an integer x, it is used as the dimension of the
square matrix (i.e the number of reporter ions). For TMT6-plex and iTRAQ4-plex, default values
taken from manufacturer’s certification sheets are used as templates, but batch specific values should
be used whenever possible. Alternatively, the filename of a csv spreadsheet can be provided. The
sheet should define the correction factors as illustrated below (including reporter names in the first
column and header row) and the corresponding correction matrix is calculated. Examples of such
csv files are available in the package’s extdata directory. Use dir(system.file("extdata",
package = "MSnbase"), pattern = "PurityCorrection", full.names = TRUE) to locate them.
If edit = TRUE, the the matrix can be edited before it is returned.

Arguments

object An object of class "MSnSet".

impurities A square ’matrix’ of dim equal to ncol(object) defining the correction coeffi-
cients to be applied. The reporter ions should be ordered along the columns and
the relative percentages along the rows.
As an example, below is the correction factors as provided in an ABI iTRAQ
4-plex certificate of analysis:

reporter % of -2 % of -1 % of +1 % of +2

128 purityCorrect-methods

114 0.0 1.0 5.9 0.2
115 0.0 2.0 5.6 0.1
116 0.0 3.0 4.5 0.1
117 0.1 4.0 3.5 0.1

The impurity table will be

0.929 0.059 0.002 0.000
0.020 0.923 0.056 0.001
0.000 0.030 0.924 0.045
0.000 0.001 0.040 0.923

where, the diagonal is computed as 100 - sum of rows of the original table and
subsequent cells are directly filled in.
Similarly, for TMT 6-plex tags, we observe

reporter % of -3 % of -2 % of -1 % of +1 % % of +2 % of +3
126 0 0 0 6.1 0 0
127 0 0 0.5 6.7 0 0
128 0 0 1.1 4.2 0 0
129 0 0 1.7 4.1 0 0
130 0 0 1.6 2.1 0 0
131 0 0.2 3.2 2.8 0 0

and obtain the following impurity correction matrix

0.939 0.061 0.000 0.000 0.000 0.000
0.005 0.928 0.067 0.000 0.000 0.000
0.000 0.011 0.947 0.042 0.000 0.000
0.000 0.000 0.017 0.942 0.041 0.000
0.000 0.000 0.000 0.016 0.963 0.021
0.000 0.000 0.000 0.002 0.032 0.938

For iTRAQ 8-plex, given the following correction factors (to make such a matrix
square, if suffices to add -4, -3, +3 and +4 columns filled with zeros):

TAG -2 -1 +1 +2
113 0 2.5 3 0.1
114 0 1 5.9 0.2
115 0 2 5.6 0.1
116 0 3 4.5 0.1
117 0.1 4 3.5 0.1
118 0.1 2 3 0.1
119 0.1 2 4 0.1
121 0.1 2 3 0.1

we calculate the impurity correction matrix shown below

purityCorrect-methods 129

113 114 115 116 117 118 119 121
% reporter 113 0.944 0.030 0.001 0.000 0.000 0.000 0.000 0.000
% reporter 114 0.010 0.929 0.059 0.002 0.000 0.000 0.000 0.000
% reporter 115 0.000 0.020 0.923 0.056 0.001 0.000 0.000 0.000
% reporter 116 0.000 0.000 0.030 0.924 0.045 0.001 0.000 0.000
% reporter 117 0.000 0.000 0.001 0.040 0.923 0.035 0.001 0.000
% reporter 118 0.000 0.000 0.000 0.001 0.020 0.948 0.030 0.001
% reporter 119 0.000 0.000 0.000 0.000 0.001 0.020 0.938 0.040
% reporter 121 0.000 0.000 0.000 0.000 0.000 0.001 0.020 0.948

Finally, for a TMT 10-plex impurity matrix (for example lot RH239932)

. -2 -1 1 2
126 0.0 0.0 5.0 (127C) 0.0 (128C)
127N 0.0 0.2 5.8 (128N) 0.0 (129N)
127C 0.0 0.3 (126) 4.8 (128C) 0.0 (129C)
128N 0.0 0.4 (127N) 4.1 (129N) 0.0 (130N)
128C 0.0 (126) 0.6 (127C) 3.0 (129C) 0.0 (130C)
129N 0.0 (127N) 0.8 (128N) 3.5 (130N) 0.0 (131)
129C 0.0 (127C) 1.4 (128C) 2.4 (130C) 0.0
130N 0.1 (128N) 1.5 (129N) 2.4 (131) 3.2
130C 0.0 (128C) 1.7 (129C) 1.8 0.0
131 0.2 (129N) 2.0 (130N) 2.2 0.0

(Note that a previous example, taken from lot PB199188A, contained a typo.)
the impurity correction matrix is

. 126 127N 127C 128N 128C 129N 129C 130N 130C 131
% reporter 126 0.950 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% reporter 127N 0.000 0.940 0.000 0.058 0.000 0.000 0.000 0.000 0.000 0.000
% reporter 127C 0.003 0.000 0.949 0.000 0.048 0.000 0.000 0.000 0.000 0.000
% reporter 128N 0.000 0.004 0.000 0.955 0.000 0.041 0.000 0.000 0.000 0.000
% reporter 128C 0.000 0.000 0.006 0.000 0.964 0.000 0.030 0.000 0.000 0.000
% reporter 129N 0.000 0.000 0.000 0.008 0.000 0.957 0.000 0.035 0.000 0.000
% reporter 129C 0.000 0.000 0.000 0.000 0.014 0.000 0.962 0.000 0.024 0.000
% reporter 130N 0.000 0.000 0.000 0.001 0.000 0.015 0.000 0.928 0.000 0.024
% reporter 130C 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.965 0.000
% reporter 131 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.020 0.000 0.956

These examples are provided as defaults impurity correction matrices in makeImpuritiesMatrix.

Methods

signature(object = "MSnSet", impurities = "matrix")

Examples

quantifying full experiment
data(msnset)
impurities <- matrix(c(0.929,0.059,0.002,0.000,

https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/certificate/Certificates%20of%20Analysis/RH239932_90309.pdf
https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets/LSG/certificate/Certificates%20of%20Analysis/PB199188A_90110.pdf

130 quantify-methods

0.020,0.923,0.056,0.001,
0.000,0.030,0.924,0.045,
0.000,0.001,0.040,0.923),

nrow=4, byrow = TRUE)
or, using makeImpuritiesMatrix()
Not run: impurities <- makeImpuritiesMatrix(4)
msnset.crct <- purityCorrect(msnset, impurities)
head(exprs(msnset))
head(exprs(msnset.crct))
processingData(msnset.crct)

default impurity matrix for iTRAQ 8-plex
makeImpuritiesMatrix(8, edit = FALSE)

default impurity matrix for TMT 10-plex
makeImpuritiesMatrix(10, edit = FALSE)

quantify-methods Quantifies ’MSnExp’ and ’Spectrum’ objects

Description

This method quantifies individual "Spectrum" objects or full "MSnExp" experiments. Current,
MS2-level isobar tagging using iTRAQ and TMT (or any arbitrary peaks of interest, see "ReporterIons")
and MS2-level label-free quantitation (spectral counting, spectral index or spectral abundance fac-
tor) are available.

Isobaric tag peaks of single spectra or complete experiments can be quantified using appropriate
methods. Label-free quantitation is available only for MSnExp experiments.

Since version 1.13.5, parallel quantitation is supported by the BiocParallel package and con-
trolled by the BPPARAM argument.

Arguments

object An instance of class "Spectrum" (isobaric tagging only) or "MSnExp".

method Peak quantitation method. For isobaric tags, one of, possibly abreviated "trapezoidation",
"max", or "sum". These methods return respectively the area under the peak(s),
the maximum of the peak(s) or the sum of all intensities of the peak(s).
For label-free quantitation, one of "SI" (spectral index), "SIgi" (global inten-
sity spectral index), "SIn" (normalised spectral index), "SAF" (spectral abun-
dance factor) or "NSAF" (normalised spectral abundance factor).
Finally, the simple "count" method counts the occurrence of the respective
spectra (at this stage all 1s) that can then be used as input to combineFeatures
to implement spectra counting.

reporters An instance of class "ReporterIons" that defines the peak(s) to be quantified.
For isobaric tagging only.

strict For isobaric tagging only. If strict is FALSE (default), the quantitation is per-
formed using data points along the entire width of a peak. If strict is set to TRUE,
once the apex(es) is/are identified, only data points within apex +/- width of
reporter (see "ReporterIons") are used for quantitation.

quantify-methods 131

BPPARAM Support for parallel processing using the BiocParallel infrastructure. When
missing (default), the default registered BiocParallelParam parameters are ap-
plied using bpparam(). Alternatively, one can pass a valid BiocParallelParam
parameter instance: SnowParam, MulticoreParam, DoparParam, . . . see the BiocParallel
package for details.

parallel Deprecated. Please see BPPARAM.

qual Should the qual slot be populated. Default is TRUE.

pepseq A character giving the peptide sequence column in the feature data. Default is
"sequence".

verbose Verbose of the output (only for MSnExp objects).

... Further arguments passed to the quantitation functions.

Details

"ReporterIons" define specific MZ at which peaks are expected and a window around that MZ
value. A peak of interest is searched for in that window. Since version 1.1.2, warnings are not
thrown anymore in case no data is found in that region or if the peak extends outside the window.
This can be checked manually after quantitation, by inspecting the quantitation data (using the
exprs accessor) for NA values or by comaring the lowerMz and upperMz columns in the "MSnSet"
qual slot against the respective expected mz(reporters) +/- width(reporters).

Once the range of the curve is found, quantification is performed. If no data points are found in the
expected region, NA is returned for the reporter peak MZ.

Note that for label-free, spectra that have not been identified (the corresponding fields in the feature
data are populated with NA values) or that have been uniquely assigned to a protein (the nprot
feature data is greater that 1) are removed prior to quantitation. The latter does not apply for method
= "count" but can be applied manually with removeMultipleAssignment.

Methods

signature(object = "MSnExp", method = "character", reporters = "ReporterIons", verbose = "logical", ...)
For isobaric tagging, quantifies peaks defined in reporters using method in all spectra of the
MSnExp object. If verbose is set to TRUE, a progress bar will be displayed.
For label-free quantitation, the respective quantitation methods and normalisations are applied
to the spectra. These methods require two additional arguments (...), namely the protein
accession of identifiers (fcol, with detault value "DatabaseAccess") and the protein lengths
(plength, with default value "DBseqLength"). These values are available of the identification
data had been collated using addIdentificationData.
An object of class "MSnSet" is returned containing the quantified feature expression and all
meta data inherited from the MSnExp object argument.

signature(object = "Spectrum", method = "character", reporters = "ReporterIons") Quantifies
peaks defined in reporters using method in the Spectrum object (isobaric tagging only).
A list of length 2 will be returned. The first element, named peakQuant, is a ’numeric’ of
length equal to length(reporters) with quantitation of the reporter peaks using method.
The second element, names curveStats, is a ’data.frame’ of dimension length(reporters)
times 7 giving, for each reporter curve parameters: maximum intensity ('maxInt'), number
of maxima ('nMaxInt'), number of data points defined the curve ('baseLength'), lower
and upper MZ values for the curve ('lowerMz' and 'upperMz'), reporter ('reporter') and
precursor MZ value ('precursor') when available.

132 quantify-methods

Author(s)

Laurent Gatto and Sebastian Gibb

References

For details about the spectral index (SI), see Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol
JA, Schnitzer JE. Label-free, normalized quantification of complex mass spectrometry data for pro-
teomic analysis. Nat Biotechnol. 2010 Jan;28(1):83-9. doi: 10.1038/nbt.1592. PMID: 20010810;
PubMed Central PMCID: PMC2805705.

For details about the spectra abundance factor, see Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato
S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP. Quantitative proteomic analysis
of distinct mammalian Mediator complexes using normalized spectral abundance factors. PNAS.
2006 Dec 12;103(50):18928-33. PMID: 17138671; PubMed Central PMCID: PMC1672612.

Examples

Quantifying a full experiment using iTRAQ4-plex tagging
data(itraqdata)
msnset <- quantify(itraqdata, method = "trap", reporters = iTRAQ4)
msnset

specifying a custom parallel framework
bp <- MulticoreParam(2L) # on Linux/OSX
bp <- SnowParam(2L) # on Windows
quantify(itraqdata[1:10], method = "trap", iTRAQ4, BPPARAM = bp)

Checking for non-quantified peaks
sum(is.na(exprs(msnset)))

Quantifying a single spectrum
qty <- quantify(itraqdata[[1]], method = "trap", iTRAQ4[1])
qty$peakQuant
qty$curveStats

Label-free quantitation
Raw (mzXML) and identification (mzid) files
quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "mzXML$")
identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "dummyiTRAQ.mzid")

msexp <- readMSData(quantFile)
msexp <- addIdentificationData(msexp, identFile)
fData(msexp)$DatabaseAccess

si <- quantify(msexp, method = "SIn")
processingData(si)
exprs(si)

saf <- quantify(msexp, method = "NSAF")
processingData(saf)
exprs(saf)

readMgfData 133

readMgfData Import mgf files as ’MSnExp’ instances.

Description

Reads a mgf file and generates an "MSnExp" object.

Usage

readMgfData(filename, pdata = NULL, centroided = TRUE, smoothed = FALSE,
verbose = isMSnbaseVerbose(), cache = 1)

Arguments

filename character vector with file name to be read.

pdata an object of class "AnnotatedDataFrame".

smoothed Logical indicating whether spectra already smoothed or not. Default is ’FALSE’.
Used to initialise "MSnProcess" object in processingData slot.

centroided Logical indicating whether spectra are centroided or not. Default is ’TRUE’.
Used to initialise "MSnProcess" object in processingData slot.

cache Numeric indicating caching level. Default is 1. Under development.

verbose verbosity flag.

Details

Note that when reading an mgf file, the original order of the spectra is lost. Thus, if the data was
originally written to mgf from an MSnExp object using writeMgfData, although the feature names
will be identical, the spectra are not as a result of the reordering. See example below.

Value

An instance of

Author(s)

Guangchuang Yu and Laurent Gatto

See Also

writeMgfData method to write the content of "Spectrum" or "MSnExp" objects to mgf files. Raw
data files can also be read with the readMSData function.

Examples

data(itraqdata)
writeMgfData(itraqdata, con="itraqdata.mgf", COM="MSnbase itraqdata")
itraqdata2 <- readMgfData("itraqdata.mgf")
note that the order of the spectra is altered
and precision of some values (precursorMz for instance)
match(signif(precursorMz(itraqdata2),4),signif(precursorMz(itraqdata),4))
[1] 1 10 11 12 13 14 15 16 17 18 ...

134 readMSData

... but all the precursors are there
all.equal(sort(precursorMz(itraqdata2)),

sort(precursorMz(itraqdata)),
check.attributes=FALSE,
tolerance=10e-5)

is TRUE
all.equal(as.data.frame(itraqdata2[[1]]),as.data.frame(itraqdata[[1]]))
is TRUE
all.equal(as.data.frame(itraqdata2[[3]]),as.data.frame(itraqdata[[11]]))
is TRUE
f <- dir(system.file(package="MSnbase",dir="extdata"),

full.name=TRUE,
pattern="test.mgf")

(x <- readMgfData(f))
x[[2]]
precursorMz(x[[2]])
precursorIntensity(x[[2]])
precursorMz(x[[1]])
precursorIntensity(x[[1]]) ## was not in test.mgf
scanIndex(x)

readMSData Imports mass-spectrometry raw data files as ’MSnExp’ instances.

Description

Reads as set of XML-based mass-spectrometry data files and generates an MSnExp object. This
function uses the functionality provided by the mzR package to access data and meta data in mzData,
mzXML and mzML.

Usage

readMSData(
files,
pdata = NULL,
msLevel. = NULL,
verbose = isMSnbaseVerbose(),
centroided. = NA,
smoothed. = NA,
cache. = 1L,
mode = c("inMemory", "onDisk")

)

Arguments

files A character with file names to be read and parsed.

pdata An object of class AnnotatedDataFrame or NULL (default).

msLevel. MS level spectra to be read. In inMemory mode, use 1 for MS1 spectra or any
larger numeric for MSn spectra. Default is 2 for InMemory mode. onDisk mode
supports multiple levels and will, by default, read all the data.

verbose Verbosity flag. Default is to use isMSnbaseVerbose().

readMSData 135

centroided. A logical, indicating whether spectra are centroided or not. Default is NA in
which case the information is extracted from the raw file (for mzML or mzXML
files). In onDisk, it can also be set for different MS levels by a vector of logicals,
where the first element is for MS1, the second element is for MS2, ... See
OnDiskMSnExp for an example.

smoothed. A logical indicating whether spectra already smoothed or not. Default is NA.

cache. Numeric indicating caching level. Default is 0 for MS1 and 1 MS2 (or higher).
Only relevant for inMemory mode.

mode On of "inMemory" (default) or "onDisk". The former loads the raw data in
memory, while the latter only generates the object and the raw data is accessed
on disk when needed. See the benchmarking vignette for memory and speed
implications.

Details

When using the inMemory mode, the whole MS data is read from file and kept in memory as
Spectrum objects within the MSnExp’es assayData slot.

To reduce the memory footpring especially for large MS1 data sets it is also possible to read only
selected information from the MS files and fetch the actual spectrum data (i.e. the M/Z and inten-
sity values) only on demand from the original data files. This can be achieved by setting mode =
"onDisk". The function returns then an OnDiskMSnExp object instead of a MSnExp object.

Value

An MSnExp object for inMemory mode and a OnDiskMSnExp object for onDisk mode.

Note

readMSData uses normalizePath to replace relative with absolute file paths.

Author(s)

Laurent Gatto

See Also

readMgfData() to read mgf peak lists.

Examples

file <- dir(system.file(package = "MSnbase", dir = "extdata"),
full.name = TRUE,
pattern = "mzXML$")

mem <- readMSData(file, mode = "inMemory")
mem
dsk <- readMSData(file, mode = "onDisk")
dsk

136 readMSnSet

readMSnSet Read ’MSnSet’

Description

This function reads data files to generate an MSnSet instance. It is a wrapper around Biobase’s
readExpressionSet function with an additional featureDataFile parameter to include feature
data. See also readExpressionSet for more details. readMSnSet2 is a simple version that takes a
single text spreadsheet as input and extracts the expression data and feature meta-data to create and
MSnSet.

Note that when using readMSnSet2, one should not set rownames as additional argument to defined
feature names. It is ignored and used to set fnames if not provided otherwise.

Usage

readMSnSet(exprsFile,
phenoDataFile,
featureDataFile,
experimentDataFile,
notesFile,
path, annotation,

exprsArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, ...),
phenoDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),
featureDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),
experimentDataArgs = list(sep = sep, header = header, row.names = row.names, quote = quote, stringsAsFactors = stringsAsFactors, ...),

sep = "\t",
header = TRUE,
quote = "",
stringsAsFactors = FALSE,
row.names = 1L,
widget = getOption("BioC")$Base$use.widgets, ...)

readMSnSet2(file, ecol, fnames, ...)

Arguments

Arguments direclty passed to readExpressionSet. The description is from the readExpressionSet
documentation page.

exprsFile (character) File or connection from which to read expression values. The file
should contain a matrix with rows as features and columns as samples. read.table
is called with this as its file argument and further arguments given by exprsArgs.

phenoDataFile (character) File or connection from which to read phenotypic data. read.AnnotatedDataFrame
is called with this as its file argument and further arguments given by phenoDataArgs.

experimentDataFile

(character) File or connection from which to read experiment data. read.MIAME
is called with this as its file argument and further arguments given by experimentDataArgs.

notesFile (character) File or connection from which to read notes; readLines is used to
input the file.

path (optional) directory in which to find all the above files.

readMSnSet 137

annotation (character) A single character string indicating the annotation associated with
this ExpressionSet.

exprsArgs A list of arguments to be used with read.table when reading in the expression
matrix.

phenoDataArgs A list of arguments to be used (with read.AnnotatedDataFrame) when reading
the phenotypic data.

experimentDataArgs

A list of arguments to be used (with read.MIAME) when reading the experiment
data.

sep, header, quote, stringsAsFactors, row.names
arguments used by the read.table-like functions.

widget A boolean value indicating whether widgets can be used. Widgets are NOT yet
implemented for read.AnnotatedDataFrame.

... Further arguments that can be passed on to the read.table-like functions.

Additional argument, specific to readMSnSet:

featureDataFile

(character) File or connection from which to read feature data. read.AnnotatedDataFrame
is called with this as its file argument and further arguments given by phenoDataArgs.

featureDataArgs

A list of arguments to be used (with read.AnnotatedDataFrame) when reading
the phenotypic data.

Arguments for readMSnSet2:

file A character indicating the spreadsheet file or a data.frame (new in version
1.19.8). Default, when file is a character, is to read the file as a comma-
separated values (csv). If different, use the additional arguments, passed to
read.csv, to parametrise file import.
Passing a data.frame can be particularly useful if the spreadsheet is in Excel
format. The appropriate sheet can first be read into R as a data.frame using,
for example readxl::read_excel, and then pass it to readMSnSet2.

ecol A numeric indicating the indices of the columns to be used as expression values.
Can also be a character indicating the names of the columns. Caution must be
taken if the column names are composed of special characters like (or - that
will be converted to a .. If ecol does not match, the error message will dislpay
the column names are see by R.

fnames An optional character or numeric of length 1 indicating the column to be used
as feature names.

Value

An instance of the MSnSet class.

Author(s)

Laurent Gatto <laurent.gatto@uclouvain.be>

See Also

The grepEcols and getEcols helper functions to identify the ecol values. The MSnbase-io vi-
gnette illustrates these functions in detail. It can be accessed with vignette("MSnbase-io").

138 readMzIdData

Examples

Not run:
exprsFile <- "path_to_intensity_file.csv"
fdatafile <- "path_to_featuredata_file.csv"
pdatafile <- "path_to_sampledata_file.csv"
Read ExpressionSet with appropriate parameters
res <- readMSnSet(exprsFile, pdataFile, fdataFile, sep = "\t", header=TRUE)

End(Not run)

library("pRolocdata")
f0 <- dir(system.file("extdata", package = "pRolocdata"),

full.names = TRUE,
pattern = "Dunkley2006")

basename(f0)
res <- readMSnSet2(f0, ecol = 5:20)
res
head(exprs(res)) ## columns 5 to 20
head(fData(res)) ## other columns

readMzIdData Import peptide-spectrum matches

Description

Reads as set of mzId files containing PSMs an generates a data.frame.

Usage

readMzIdData(files)

Arguments

files A character of mzid files.

Details

This function uses the functionality provided by the mzR package to access data in the mzId files.
An object of class mzRident can also be coerced to a data.frame using as(, "data.frame").

Value

A data.frame containing the PSMs stored in the mzId files.

Author(s)

Laurent Gatto

See Also

filterIdentificationDataFrame() to filter out unreliable PSMs.

readMzTabData 139

Examples

idf <- "TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzid"
f <- msdata::ident(full.names = TRUE, pattern = idf)
basename(f)
readMzIdData(f)

readMzTabData Read an ’mzTab’ file

Description

This function can be used to create an "MSnSet" by reading and parsing an mzTab file. The metadata
section is always used to populate the MSnSet’s experimentData()@other$mzTab slot.

Usage

readMzTabData(
file,
what = c("PRT", "PEP", "PSM"),
version = c("1.0", "0.9"),
verbose = isMSnbaseVerbose()

)

Arguments

file A character with the mzTab file to be read in.

what One of "PRT", "PEP" or "PSM", defining which of protein, peptide PSMs section
should be returned as an MSnSet.

version A character defining the format specification version of the mzTab file. De-
fault is "1.0". Version "0.9" is available of backwards compatibility. See
readMzTabData_v0.9 for details.

verbose Produce verbose output.

Value

An instance of class MSnSet.

Author(s)

Laurent Gatto

See Also

See MzTab and MSnSetList for details about the inners of readMzTabData.

140 readMzTabData_v0.9

Examples

testfile <- "https://raw.githubusercontent.com/HUPO-PSI/mzTab/master/examples/1_0-Proteomics-Release/PRIDE_Exp_Complete_Ac_16649.xml-mztab.txt"

prot <- readMzTabData(testfile, "PRT")

prot

head(fData(prot))

head(exprs(prot))

psms <- readMzTabData(testfile, "PSM")

psms

head(fData(psms))

readMzTabData_v0.9 Read an ’mzTab’ file

Description

This function can be used to create a "MSnSet" by reading and parsing an mzTab file. The metadata
section is always used to populate the MSnSet’s experimentData slot.

Usage

readMzTabData_v0.9(file, what = c("PRT", "PEP"), verbose = isMSnbaseVerbose())

Arguments

file A character with the mzTab file to be read in.

what One of "PRT" or "PEP", defining which of protein of peptide section should be
parse. The metadata section, when available, is always used to populate the
experimentData slot.

verbose Produce verbose output.

Value

An instance of class MSnSet.

Author(s)

Laurent Gatto

See Also

writeMzTabData to save an "MSnSet" as an mzTab file.

readSRMData 141

Examples

testfile <- "https://raw.githubusercontent.com/HUPO-PSI/mzTab/master/legacy/jmztab-1.0/examples/mztab_itraq_example.txt"

prot <- readMzTabData_v0.9(testfile, "PRT")

prot

pep <- readMzTabData_v0.9(testfile, "PEP")

pep

readSRMData Read SRM/MRM chromatographic data

Description

The readSRMData function reads MRM/SRM data from provided mzML files and returns the results
as a MChromatograms() object.

Usage

readSRMData(files, pdata = NULL)

Arguments

files character with the files containing the SRM/MRM data.

pdata data.frame or AnnotatedDataFrame with file/sample descriptions.

Details

readSRMData supports reading chromatogram entries from mzML files. If multiple files are pro-
vided the same precursor and product m/z for SRM/MRM chromatograms are expected across files.
The number of columns of the resulting MChromatograms() object corresponds to the number of
files. Each row in the MChromatograms object is supposed to contain chromatograms with same
polarity, precursor and product m/z. If chromatograms with redundant polarity, precursor and prod-
uct m/z values and precursor collision energies are found, they are placed into multiple consecutive
rows in the MChromatograms object.

Value

A MChromatograms() object. See details above for more information.

Note

readSRMData reads only SRM/MRM chromatogram data, i.e. chromatogram data from mzML files
with precursorIsolationWindowTargetMZ and productIsolationWindowTargetMZ attributes.
Total ion chromatogram data is hence not extracted.

The number of features and hence rows of the resulting MChromatograms object depends on the total
list of unique precursor and product m/z isolation windows (and precursor collision energies) found
across all input files. In cases in which not each file has chromatgraphic data for the same polarity,
precursor m/z, product m/z and collision energy, an empty Chromatogram() object is reported for
the specific precursor and product m/z combination of the respective file (and a warning is thrown).

142 reduce,data.frame-method

Author(s)

Johannes Rainer

Examples

Read an example MRM/SRM data
library(msdata)
fl <- proteomics(full.names = TRUE, pattern = "MRM")

Read the data
mrm <- readSRMData(fl)

The data is represented as a MChromatograms object, each column
containing the data from one input file
mrm

Access the polarity for each chromatogram (row)
polarity(mrm)

Access the precursor m/z. The result is returned as a matrix with
columns representing the minimum and maximum m/z (will be identical in
most cases).
precursorMz(mrm)

Access the product m/z.
productMz(mrm)

Plot one chromatogram
plot(mrm[1,])

reduce,data.frame-method

Reduce a data.frame

Description

Reduce a data.frame so that the (primary) key column contains only unique entries and other
columns pertaining to that entry are combined into semicolon-separated values into a single row/observation.

Usage

S4 method for signature 'data.frame'
reduce(x, key, sep = ";")

Arguments

x A data.frame.

key The column name (currenly only one is supported) to be used as primary key.

sep The separator. Default is ;.

removeNoId-methods 143

Details

An important side-effect of reducing a data.frame is that all columns other than the key are con-
verted to characters when they are collapsed to a semi-column separated value (even if only one
value is present) as soon as one observation of transformed.

Value

A reduced data.frame.

Author(s)

Laurent Gatto

Examples

dfr <- data.frame(A = c(1, 1, 2),
B = c("x", "x", "z"),
C = LETTERS[1:3])

dfr
dfr2 <- reduce(dfr, key = "A")
dfr2
column A used as key is still num
str(dfr2)
dfr3 <- reduce(dfr, key = "B")
dfr3
A is converted to chr; B remains factor
str(dfr3)
dfr4 <- data.frame(A = 1:3,

B = LETTERS[1:3],
C = c(TRUE, FALSE, NA))

No effect of reducing, column classes are maintained
str(reduce(dfr4, key = "B"))

removeNoId-methods Removes non-identified features

Description

The method removes non-identifed features in MSnExp and MSnSet instances using relevant infor-
mation from the feaureData slot of a user-provide filtering vector of logicals.

Methods

signature(object = "MSnExp", fcol = "pepseq", keep = NULL) Removes the feature from object
that have a feature fcol (default is "pepseq") equal to NA. Alternatively, one can also manu-
ally define keep, a vector of logical, defining the feature to be retained.

signature(object = "MSnSet", fcol = "pepseq", keep = NULL) As above of MSnSet instances.

Author(s)

Laurent Gatto

144 removePeaks-methods

See Also

MSnExp and MSnSet.

Examples

quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),
full.name = TRUE, pattern = "mzXML$")

identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),
full.name = TRUE, pattern = "dummyiTRAQ.mzid")

msexp <- readMSData(quantFile)
msexp <- addIdentificationData(msexp, identFile)
fData(msexp)$sequence
length(msexp)

using default fcol
msexp2 <- removeNoId(msexp)
length(msexp2)
fData(msexp2)$sequence

using keep
print(fvarLabels(msexp))
(k <- fData(msexp)$'MS.GF.EValue' > 75)
k[is.na(k)] <- FALSE
k
msexp3 <- removeNoId(msexp, keep = k)
length(msexp3)
fData(msexp3)$sequence

removePeaks-methods Removes low intensity peaks

Description

This method sets low intensity peaks from individual spectra (Spectrum instances) or whole exper-
iments (MSnExp instances) to 0. The intensity threshold is set with the t parameter. Default is the
"min" character. The threshold is then set as the non-0 minimum intensity found in the spectrum.
Any other numeric values is valid. All peaks with maximum intensity smaller or equal to t are set
to 0.

If the spectrum is in profile mode, ranges of successive non-0 peaks <= t are set to 0. If the spectrum
is centroided, then individual peaks <= t are set to 0. See the example below for an illustration.

Note that the number of peaks is not changed; the peaks below the threshold are set to 0 and the
object is not cleanded out (see clean). An illustrative example is shown below.

Methods

signature(object = "MSnExp", t, verbose = "logical") Removes low intensity peaks of all
spectra in MSnExp object. t sets the minimum peak intensity. Default is "min", i.e the smallest
intensity in each spectrum. Other numeric values are valid. Displays a control bar if verbose
set to TRUE (default). Returns a new MSnExp instance.

removePeaks-methods 145

signature(object = "Spectrum", t, msLevel. = "numeric") Removes low intensity peaks of
Spectrum object. t sets the minimum peak intensity. Default is "min", i.e the smallest in-
tensity in each spectrum. Other numeric values are valid. msLevel. defines the level of the
spectrum, and if msLevel(object) != msLevel., cleaning is ignored. Only relevant when
called from OnDiskMSnExp and is only relevant for developers.
Returns a new Spectrum instance.

Author(s)

Laurent Gatto

See Also

clean and trimMz for other spectra processing methods.

Examples

int <- c(2, 0, 0, 0, 1, 5, 1, 0, 0, 1, 3, 1, 0, 0, 1, 4, 2, 1)
sp1 <- new("Spectrum2",

intensity = int,
mz = 1:length(int),
centroided = FALSE)

sp2 <- removePeaks(sp1) ## no peaks are removed here
as min intensity is 1 and
no peak has a max int <= 1

sp3 <- removePeaks(sp1, 3)
intensity(sp1)
intensity(sp2)
intensity(sp3)

peaksCount(sp1) == peaksCount(sp2)
peaksCount(sp3) <= peaksCount(sp1)

data(itraqdata)
itraqdata2 <- removePeaks(itraqdata, t = 2.5e5)
table(unlist(intensity(itraqdata)) == 0)
table(unlist(intensity(itraqdata2)) == 0)
processingData(itraqdata2)

difference between centroided and profile peaks

int <- c(104, 57, 32, 33, 118, 76, 38, 39, 52, 140, 52, 88, 394, 71,
408, 94, 2032)

sp <- new("Spectrum2",
intensity = int,
centroided = FALSE,
mz = seq_len(length(int)))

unchanged, as ranges of peaks <= 500 considered
intensity(removePeaks(sp, 500))
stopifnot(identical(intensity(sp), intensity(removePeaks(sp, 500))))

centroided(sp) <- TRUE
different!
intensity(removePeaks(sp, 500))

146 removeReporters-methods

removeReporters-methods

Removes reporter ion tag peaks

Description

This methods sets all the reporter tag ion peaks from one MS2 spectrum or all the MS2 spectra of
an experiment to 0. Reporter data is specified using an "ReporterIons" instance. The peaks are
selected around the expected reporter ion m/z value +/- the reporter width. Optionally, the spec-
trum/spectra can be cleaned to remove successive 0 intensity data points (see the clean function
for details).

Note that this method only works for MS2 spectra or experiments that contain MS2 spectra. It will
fail for MS1 spectrum.

Methods

signature(object = "MSnExp", reporters = "ReporterIons", clean = "logical", verbose = "logical")
The reporter ion peaks defined in the reporters instance of all the MS2 spectra of the
"MSnExp" instance are set to 0 and, if clean is set to TRUE, cleaned. The default value of
reporters is NULL, which leaves the spectra as unchanged. The verbose parameter (default
is TRUE) defines whether a progress bar should be showed.

signature(object = "Spectrum", reporters = "ReporterIons", clean = "FALSE") The reporter
ion peaks defined in the reporters instance of MS2 "Spectrum" instance are set to 0 and,
if clean is set to TRUE, cleaned. The default value of reporters is NULL, which leaves the
spectrum as unchanged.

Author(s)

Laurent Gatto

See Also

clean and removePeaks for other spectra processing methods.

Examples

sp1 <- itraqdata[[1]]
sp2 <- removeReporters(sp1,reporters=iTRAQ4)
sel <- mz(sp1) > 114 & mz(sp1) < 114.2
mz(sp1)[sel]
intensity(sp1)[sel]
plot(sp1,full=TRUE,reporters=iTRAQ4)
intensity(sp2)[sel]
plot(sp2,full=TRUE,reporters=iTRAQ4)

ReporterIons-class 147

ReporterIons-class The "ReporterIons" Class

Description

The ReporterIons class allows to define a set of isobaric reporter ions that are used for quantifi-
cation in MSMS mode, e.g. iTRAQ (isobaric tag for relative and absolute quantitation) or TMT
(tandem mass tags). ReporterIons instances can them be used when quantifying "MSnExp" data
of plotting the reporters peaks based on in "Spectrum2" ojects.

Some reporter ions are provided with MSnbase an can be loaded with the data function. These
reporter ions data sets are:

iTRAQ4: ReporterIon object for the iTRAQ 4-plex set. Load with data(iTRAQ4).

iTRAQ5: ReporterIon object for the iTRAQ 4-plex set plus the isobaric tag. Load with data(iTRAQ5).

TMT6: ReporterIon object for the TMT 6-plex set. Load with data(TMT6).

TMT7: ReporterIon object for the TMT 6-plex set plus the isobaric tag. Load with data(TMT6).

Objects from the Class

Objects can be created by calls of the form new("ReporterIons", ...).

Slots

name: Object of class "character" to identify the ReporterIons instance.

reporterNames: Object of class "character" naming each individual reporter of the ReporterIons
instance. If not provided explicitely, they are names by concatenating the ReporterIons name
and the respective MZ values.

description: Object of class "character" to describe the ReporterIons instance.

mz: Object of class "numeric" providing the MZ values of the reporter ions.

col: Object of class "character" providing colours to highlight the reporters on plots.

width: Object of class "numeric" indicating the width around the individual reporter ions MZ
values were to search for peaks. This is dependent on the mass spectrometer’s resolution and
is used for peak picking when quantifying the reporters. See quantify for more details about
quantification.

.__classVersion__: Object of class "Versions" indicating the version of the ReporterIons
instance. Intended for developer use and debugging.

Extends

Class "Versioned", directly.

Methods

show(object) Displays object content as text.

object[] Subsets one or several reporter ions of the ReporterIons object and returns a new in-
stance of the same class.

length(object) Returns the number of reporter ions in the instance.

148 ReporterIons-class

mz(object, ...) Returns the expected mz values of reporter ions. Additional arguments are cur-
rently ignored.

reporterColours(object) or reporterColors(object) Returns the colours used to highlight the
reporter ions.

reporterNames(object) Returns the name of the individual reporter ions. If not specified or is an
incorrect number of names is provided at initialisation, the names are generated automatically
by concatenating the instance name and the reporter’s MZ values.

reporterNames(object) <- value Sets the reporter names to value, which must be a character
of the same length as the number of reporter ions.

width(object) Returns the widths in which the reporter ion peaks are expected.

names(object) Returns the name of the ReporterIons object.

description(object) Returns the description of the ReporterIons object.

Author(s)

Laurent Gatto

References

Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S,
Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin
DJ. "Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric
tagging reagents." Mol Cell Proteomics, 2004 Dec;3(12):1154-69. Epub 2004 Sep 22. PubMed
PMID: 15385600.

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R,
Mohammed AK, Hamon C. "Tandem mass tags: a novel quantification strategy for comparative
analysis of complex protein mixtures by MS/MS." Anal Chem. 2003 Apr 15;75(8):1895-904. Er-
ratum in: Anal Chem. 2006 Jun 15;78(12):4235. Mohammed, A Karim A [added] and Anal Chem.
2003 Sep 15;75(18):4942. Johnstone, R [added]. PubMed PMID: 12713048.

See Also

TMT6 or iTRAQ4 for readily available examples.

Examples

Code used for the iTRAQ4 set
ri <- new("ReporterIons",

description="4-plex iTRAQ",
name="iTRAQ4",
reporterNames=c("iTRAQ4.114","iTRAQ4.115",

"iTRAQ4.116","iTRAQ4.117"),
mz=c(114.1,115.1,116.1,117.1),
col=c("red","green","blue","yellow"),
width=0.05)

ri
reporterNames(ri)
ri[1:2]

selectFeatureData 149

selectFeatureData Select feature variables of interest

Description

Select feature variables to be retained.

requiredFvarLabels returns a character vector with the required feature data variable names
(fvarLabels, i.e. the column names in the fData data.frame) for the specified object.

Usage

selectFeatureData(object, graphics = TRUE, fcol)

requiredFvarLabels(x = c("OnDiskMSnExp", "MSnExp", "MSnSet"))

Arguments

object An MSnSet, MSnExp or OnDiskMSnExp.

graphics A logical (default is TRUE) indicating whether a shiny application should be
used if available. Otherwise, a text menu is used. Ignored if k is not missing.

fcol A numeric, logical or character of valid feature variables to be passed di-
rectly.

x character(1) specifying the class name for which the required feature data
variable names should be returned.

Value

For selectFeatureData: updated object containing only selected feature variables.

For requiredFvarLabels: character with the required feature variable names.

Author(s)

Laurent Gatto

Examples

library("pRolocdata")
data(hyperLOPIT2015)
5 first feature variables
x <- selectFeatureData(hyperLOPIT2015, fcol = 1:5)
fvarLabels(x)
Not run:
select via GUI
x <- selectFeatureData(hyperLOPIT2015)
fvarLabels(x)

End(Not run)

Subset the feature data of an OnDiskMSnExp object to the minimal
required columns
f <- system.file("microtofq/MM14.mzML", package = "msdata")

150 smooth-methods

od <- readMSData(f, mode = "onDisk")

what columns do we have?
fvarLabels(od)

Reduce the feature data data.frame to the required columns only
od <- selectFeatureData(od, fcol = requiredFvarLabels(class(od)))
fvarLabels(od)

smooth-methods Smooths ’MSnExp’ or ’Spectrum’ instances

Description

This method smooths individual spectra (Spectrum instances) or whole experiments (MSnExp in-
stances). Currently, the Savitzky-Golay-Smoothing (method = "SavitzkyGolay") and the Moving-
Average-Smoothing (method = "MovingAverage") are available, as implemented in the MALDIquant::smoothIntensity
function. Additional methods might be added at a later stage.

Methods

signature(x = "MSnExp", method = "character", halfWindowSize = "integer", verbose = "logical", ...)
Smooths all spectra in MSnExp. method could be "SavitzkyGolay" or "MovingAverage".
"halfWindowSize" controls the window size of the filter. The resulting window size is 2 *
halfWindowSize + 1. The best size differs depending on the selected method. For method =
"SavitzkyGolay" it should be lower than FWHM of the peaks (full width at half maximum;
please find details in Bromba and Ziegler 1981). The arguments ... are passed to the internal
functions. For method="MovingAverage" there is an additional weighted argument (default:
FALSE) to indicate if the average should be equal weight (default) or if it should have weights
depending on the distance from the center as calculated as 1/2^abs(-halfWindowSize:halfWindowSize)
with the sum of all weigths normalized to 1. For method="SavitzkyGolay" an additonal
argument is polynomialOrder (default: 3). It controls the polynomial order of the Savitzky-
Golay Filter. This method displays a progress bar if verbose = TRUE. Returns an MSnExp
instance with smoothed spectra.

signature(x = "Spectrum", method = "character", halfWindowSize = "integer", ...) Smooths
the spectrum (Spectrum instance). This method is the same as above but returns a smoothed
Spectrum instead of an MSnExp object. It has no verbose argument. Please read the details
for the above MSnExp method.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

A. Savitzky and M. J. Golay. 1964. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, 36(8), 1627-1639.

M. U. Bromba and H. Ziegler. 1981. Application hints for Savitzky-Golay digital smoothing filters.
Analytical Chemistry, 53(11), 1583-1586.

S. Gibb and K. Strimmer. 2012. MALDIquant: a versatile R package for the analysis of mass spec-
trometry data. Bioinformatics 28: 2270-2271. http://strimmerlab.org/software/maldiquant/

http://strimmerlab.org/software/maldiquant/

Spectrum-class 151

See Also

clean, pickPeaks, removePeaks and trimMz for other spectra processing methods.

Examples

sp1 <- new("Spectrum1",
intensity = c(1:6, 5:1),
mz = 1:11)

sp2 <- smooth(sp1, method = "MovingAverage", halfWindowSize = 2)
intensity(sp2)

data(itraqdata)
itraqdata2 <- smooth(itraqdata,

method = "MovingAverage",
halfWindowSize = 2)

processingData(itraqdata2)

Spectrum-class The "Spectrum" Class

Description

Virtual container for spectrum data common to all different types of spectra. A Spectrum object
can not be directly instanciated. Use "Spectrum1" and "Spectrum2" instead.

In version 1.19.12, the polarity slot has been added to this class (previously in "Spectrum1").

Slots

msLevel: Object of class "integer" indicating the MS level: 1 for MS1 level Spectrum1 objects
and 2 for MSMSM Spectrum2 objects. Levels > 2 have not been tested and will be handled
as MS2 spectra.

polarity: Object of class "integer" indicating the polarity if the ion.

peaksCount: Object of class "integer" indicating the number of MZ peaks.

rt: Object of class "numeric" indicating the retention time (in seconds) for the current ions.

tic: Object of class "numeric" indicating the total ion current, as reported in the original raw data
file.

acquisitionNum: Object of class "integer" corresponding to the acquisition number of the cur-
rent spectrum.

scanIndex: Object of class "integer" indicating the scan index of the current spectrum.

mz: Object of class "numeric" of length equal to the peaks count (see peaksCount slot) indicating
the MZ values that have been measured for the current ion.

intensity: Object of class "numeric" of same length as mz indicating the intensity at which each
mz datum has been measured.

centroided: Object of class "logical" indicating if instance is centroided (’TRUE’) of uncen-
troided (’FALSE’). Default is NA.

smoothed: Object of class "logical" indicating if instance is smoothed (’TRUE’) of unsmoothed
(’FALSE’). Default is NA.

152 Spectrum-class

fromFile: Object of class "integer" referencing the file the spectrum originates. The file names
are stored in the processingData slot of the "MSnExp" or "MSnSet" instance that contains
the current "Spectrum" instance.

.__classVersion__: Object of class "Versions" indicating the version of the Spectrum class.
Intended for developer use and debugging.

Extends

Class "Versioned", directly.

Methods

acquisitionNum(object) Returns the acquisition number of the spectrum as an integer.

scanIndex(object) Returns the scan index of the spectrum as an integer.

centroided(object) Indicates whether spectrum is centroided (TRUE), in profile mode (FALSE),
or unkown (NA).

isCentroided(object, k=0.025, qtl=0.9) A heuristic assessing if a spectrum is in profile or
centroided mode. The function takes the qtlth quantile top peaks, then calculates the differ-
ence between adjacent M/Z value and returns TRUE if the first quartile is greater than k. (See
MSnbase:::.isCentroided for the code.) The function has been tuned to work for MS1 and
MS2 spectra and data centroided using different peak picking algorithms, but false positives
can occur. See https://github.com/lgatto/MSnbase/issues/131 for details. It should
however be safe to use is at the experiment level, assuming that all MS level have the same
mode. See class?MSnExp for an example.

smoothed(object) Indicates whether spectrum is smoothed (TRUE) or not (FALSE).

centroided(object) <- value Sets the centroided status of the spectrum object.

smoothed(object) <- value Sets the smoothed status of the spectrum object.

fromFile(object) Returns the index of the raw data file from which the current instances origi-
nates as an integer.

intensity(object) Returns an object of class numeric containing the intensities of the spectrum.

msLevel(object) Returns an MS level of the spectrum as an integer.

mz(object, ...) Returns an object of class numeric containing the MZ value of the spectrum
peaks. Additional arguments are currently ignored.

peaksCount(object) Returns the number of peaks (possibly of 0 intensity) as an integer.

rtime(object, ...) Returns the retention time for the spectrum as an integer. Additional argu-
ments are currently ignored.

ionCount(object) Returns the total ion count for the spectrum as a numeric.

tic(object, ...) Returns the total ion current for the spectrum as a numeric. Additional argu-
ments are currently ignored. This is the total ion current as originally reported in the raw data
file. To get the current total ion count, use ionCount.

bin signature(object = "Spectrum"): Bins Spectrum. See bin documentation for more details
and examples.

clean signature(object = "Spectrum"): Removes unused 0 intensity data points. See clean
documentation for more details and examples.

compareSpectra signature(x = "Spectrum", y = "Spectrum"): Compares spectra. See compareSpectra
documentation for more details and examples.

estimateNoise signature(object = "Spectrum"): Estimates the noise in a profile spectrum. See
estimateNoise documentation for more details and examples.

https://github.com/lgatto/MSnbase/issues/131

Spectrum1-class 153

pickPeaks signature(object = "Spectrum"): Performs the peak picking to generate a centroided
spectrum. See pickPeaks documentation for more details and examples.

plot signature(x = "Spectrum", y = "missing"): Plots intensity against mz. See plot.Spectrum
documentation for more details.

plot signature(x = "Spectrum", y = "Spectrum"): Plots two spectra above/below each other.
See plot.Spectrum.Spectrum documentation for more details.

plot signature(x = "Spectrum", y = "character"): Plots an MS2 level spectrum and its high-
light the fragmention peaks. See plot.Spectrum.character documentation for more details.

quantify signature(object = "Spectrum"): Quatifies defined peaks in the spectrum. See quantify
documentation for more details.

removePeaks signature(object = "Spectrum"): Remove peaks lower that a threshold t. See
removePeaks documentation for more details and examples.

smooth signature(x = "Spectrum"): Smooths spectrum. See smooth documentation for more
details and examples.

show signature(object = "Spectrum"): Displays object content as text.

trimMz signature(object = "Spectrum"): Trims the MZ range of all the spectra of the MSnExp
instance. See trimMz documentation for more details and examples.

isEmpty signature(x = "Spectrum"): Checks if the x is an empty Spectrum.

as signature(object = "Spectrum", "data.frame"): Coerces the Spectrum object to a two-
column data.frame containing intensities and MZ values.

Note

This is a virtual class and can not be instanciated directly.

Author(s)

Laurent Gatto

See Also

Instaciable sub-classes "Spectrum1" and "Spectrum2" for MS1 and MS2 spectra.

Spectrum1-class The "Spectrum1" Class for MS1 Spectra

Description

Spectrum1 extends the "Spectrum" class and introduces an MS1 specific attribute in addition to
the slots in "Spectrum". Spectrum1 instances are not created directly but are contained in the
assayData slot of an "MSnExp".

Slots

See the "Spectrum" class for inherited slots.

Extends

Class "Spectrum", directly. Class "Versioned", by class "Spectrum", distance 2.

154 Spectrum2-class

Methods

See "Spectrum" for additional accessors and methods to process Spectrum1 objects.

polarity(object) Returns the polarity of the spectrum as an integer.

Author(s)

Laurent Gatto

See Also

Virtual super-class "Spectrum", "Spectrum2" for MS2 spectra and "MSnExp" for a full experiment
container.

Spectrum2-class The "Spectrum2" Class for MSn Spectra

Description

Spectrum2 extends the "Spectrum" class and introduces several MS2 specific attributes in addition
to the slots in "Spectrum". Since version 1.99.2, this class is used for any MS levels > 1. Spectrum2
are not created directly but are contained in the assayData slot of an "MSnExp".

In version 1.19.12, the polarity slot had been added to the "Spectrum" class (previously in
"Spectrum1"). Hence, "Spectrum2" objects created prior to this change will not be valid any-
more, since they will miss the polarity slots. Object can be appropriately updated using the
updateObject method.

Slots

See the "Spectrum" class for inherited slots.

merged: Object of class "numeric" indicating of how many combination the current spectrum is
the result of.

precScanNum: Object of class "integer" indicating the precursor MS scan index in the original
input file. Accessed with the precScanNum or precAcquisitionNum methods.

precursorMz: Object of class "numeric" providing the precursor ion MZ value.

precursorIntensity: Object of class "numeric" providing the precursor ion intensity.

precursorCharge: Object of class "integer" indicating the precursor ion charge.

collisionEnergy: Object of class "numeric" indicating the collision energy used to fragment the
parent ion.

Extends

Class "Spectrum", directly. Class "Versioned", by class "Spectrum", distance 2.

TMT6 155

Methods

See "Spectrum" for additional accessors and methods for Spectrum2 objects.

precursorMz(object) Returns the precursor MZ value as a numeric.

precursorMz(object) Returns the precursor scan number in the original data file as an integer.

precursorIntensity(object) Returns the precursor intensity as a numeric.

precursorCharge(object) Returns the precursor intensity as a integer.

collisionEnergy(object) Returns the collision energy as an numeric.

removeReporters(object, ...) Removes all reporter ion peaks. See removeReporters docu-
mentation for more details and examples.

precAcquisitionNum: Returns the precursor’s acquisition number.

precScanNum: See precAcquisitionNum.

calculateFragments signature(sequence = "character", object = "Spectrum2"): Calculates
and matches the theoretical fragments of a peptide sequence with the ones observed in a spec-
trum. See calculateFragments documentation for more details and examples.

Author(s)

Laurent Gatto

See Also

Virtual super-class "Spectrum", "Spectrum1" for MS1 spectra and "MSnExp" for a full experiment
container.

TMT6 TMT 6/10-plex sets

Description

This instance of class "ReporterIons" corresponds to the TMT 6-plex set, i.e the 126, 127, 128,
129, 130 and 131 isobaric tags. In the TMT7 data set, an unfragmented tag, i.e reporter and attached
isobaric tag, is also included at MZ 229. A second TMT6b has slightly different values.

The TMT10 instance corresponds to the 10-plex version. There are spectific HCD (TMT10HCD, same
as TMT10) and ETD (TMT10ETD) sets.

These objects are used to plot the reporter ions of interest in an MSMS spectra (see "Spectrum2")
as well as for quantification (see quantify).

Usage

TMT6
TMT6b
TMT7
TMT7b
TMT10
TMT10ETD
TMT10HCD
TMT11
TMT11HCD

156 trimMz-methods

References

Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R,
Mohammed AK, Hamon C. "Tandem mass tags: a novel quantification strategy for comparative
analysis of complex protein mixtures by MS/MS." Anal Chem. 2003 Apr 15;75(8):1895-904. Er-
ratum in: Anal Chem. 2006 Jun 15;78(12):4235. Mohammed, A Karim A [added] and Anal Chem.
2003 Sep 15;75(18):4942. Johnstone, R [added]. PubMed PMID: 12713048.

See Also

iTRAQ4.

Examples

TMT6
TMT6[1:2]

TMT10

newReporter <- new("ReporterIons",
description="an example",
name="my reporter ions",
reporterNames=c("myrep1","myrep2"),
mz=c(121,122),
col=c("red","blue"),
width=0.05)

newReporter

trimMz-methods Trims ’MSnExp’ or ’Spectrum’ instances

Description

This method selects a range of MZ values in a single spectrum (Spectrum instances) or all the
spectra of an experiment (MSnExp instances). The regions to trim are defined by the range of mz
argument, such that MZ values <= min(mz) and MZ values >= max(mz) are trimmed away.

Methods

signature(object = "MSnExp", mz = "numeric", msLevel. = "numeric") Trims all spectra in
MSnExp object according to mz. If msLevel. is defined, then only spectra of that level are
trimmer.

signature(object = "Spectrum", mz = "numeric", msLevel. = "numeric") Trims the Spectrum
object and retruns a new trimmed object. msLevel. defines the level of the spectrum, and
if msLevel(object) != msLevel., cleaning is ignored. Only relevant when called from
OnDiskMSnExp and is only relevant for developers.

Author(s)

Laurent Gatto

See Also

removePeaks and clean for other spectra processing methods.

updateObject-methods 157

Examples

mz <- 1:100
sp1 <- new("Spectrum2",

mz = mz,
intensity = abs(rnorm(length(mz))))

sp2 <- trimMz(sp1, c(25, 75))
range(mz(sp1))
range(mz(sp2))

data(itraqdata)
itraqdata2 <- filterMz(itraqdata, c(113, 117))
range(mz(itraqdata))
range(mz(itraqdata2))
processingData(itraqdata2)

updateObject-methods Update MSnbase objects

Description

Methods for function updateObject for objects from the MSnbase package. See updateObject
for details.

Methods

signature(object = "MSnExp") Update the MSnExp object to the latest class version

signature(object = "Spectrum") Update the Spectrum object (and it’s sub-classes Spectrum1
and Spectrum2) to the latest class version.

writeMgfData-methods Write an experiment or spectrum to an mgf file

Description

Methods writeMgfData write individual "Spectrum" instances of whole "MSnExp" experiments to
a file in Mascot Generic Format (mgf) (see http://www.matrixscience.com/help/data_file_
help.html for more details). Function readMgfData read spectra from and mgf file and creates an
"MSnExp" object.

Arguments

object An instance of class "Spectrum" or "MSnExp".

con A valid connection or a character string with the name of the file to save
the object. In case of the latter, a file connection is created. If not specified,
’spectrum.mgf’ or ’experiment.mgf’ are used depending on the class of object.
Note that existing files are overwritted.

COM Optional character vector with the value for the ’COM’ field.

TITLE Optional character vector with the value for the spectrum ’TITLE’ field. Not
applicable for experiments.

http://www.matrixscience.com/help/data_file_help.html
http://www.matrixscience.com/help/data_file_help.html

158 writeMSData,MSnExp,character-method

Details

Note that when reading an mgf file, the original order of the spectra is lost. Thus, if the data was
originally written to mgf from an MSnExp object using writeMgfData, although the feature names
will be identical, the spectra are not as a result of the reordering. See example below.

Methods

signature(object = "MSnExp") Writes the full exeriment to an mgf file.

signature(object = "Spectrum") Writes an individual spectrum to an mgf file.

See Also

readMgfData function to read data from and mgf file.

Examples

data(itraqdata)

f <- tempfile()

writeMgfData(itraqdata, con = f)

itraqdata2 <- readMgfData(f)

note that the order of the spectra and precision of some values
(precursorMz for instance) are altered
match(signif(precursorMz(itraqdata2),4),

signif(precursorMz(itraqdata),4))

[1] 1 10 11 12 13 14 15 16 17 18 ...
... but all the precursors are there
all.equal(sort(precursorMz(itraqdata2)),

sort(precursorMz(itraqdata)),
check.attributes = FALSE,
tolerance = 10e-5)

all.equal(as.data.frame(itraqdata2[[1]]),
as.data.frame(itraqdata[[1]]))

all.equal(as.data.frame(itraqdata2[[3]]),
as.data.frame(itraqdata[[11]]))

all(featureNames(itraqdata2) == featureNames(itraqdata))

writeMSData,MSnExp,character-method

Write MS data to mzML or mzXML files

Description

The writeMSData,MSnExp and writeMSData,OnDiskMSnExp saves the content of a MSnExp or
OnDiskMSnExp object to MS file(s) in either mzML or mzXML format.

writeMSData,MSnExp,character-method 159

Usage

S4 method for signature 'MSnExp,character'
writeMSData(
object,
file,
outformat = c("mzml", "mzxml"),
merge = FALSE,
verbose = isMSnbaseVerbose(),
copy = FALSE,
software_processing = NULL

)

Arguments

object OnDiskMSnExp or MSnExp object.
file character with the file name(s). Its length has to match the number of sam-

ples/files of x.
outformat character(1) defining the format of the output files. Default output format is

"mzml".
merge logical(1) whether the data should be saved into a single mzML file. Default

is merge = FALSE, i.e. each sample is saved to a separate file. Note: merge =
TRUE is not yet implemented.

verbose logical(1) if progress messages should be displayed.
copy logical(1) if metadata (data processings, original file names etc) should be

copied from the original files. See details for more information.
software_processing

optionally provide specific data processing steps. See documentation of the
software_processing parameter of mzR::writeMSData().

Details

The writeMSData method uses the proteowizard libraries through the mzR package to save the MS
data. The data can be written to mzML or mzXML files with or without copying additional metadata
information from the original files from which the data was read by the readMSData() function.
This can be set using the copy parameter. Note that copy = TRUE requires the original files to be
available and is not supported for input files in other than mzML or mzXML format. All metadata
related to the run is copied, such as instrument information, data processings etc. If copy = FALSE
only processing information performed in R (using MSnbase) are saved to the mzML file.

Currently only spectrum data is supported, i.e. if the original mzML file contains also chromatogram
data it is not copied/saved to the new mzML file.

Note

General spectrum data such as total ion current, peak count, base peak m/z or base peak intensity
are calculated from the actual spectrum data before writing the data to the files.

For MSn data, if the OnDiskMSnExp or MSnExp does not contain also the precursor scan of a MS
level > 1 spectrum (e.g. due to filtering on the MS level) precursorScanNum is set to 0 in the output
file to avoid potentially linking to a wrong spectrum.

The exported mzML file should be valid according to the mzML 1.1.2 standard. For exported
mzXML files it can not be guaranteed that they are valid and can be opened with other software
than mzR/MSnbase.

160 writeMzTabData

Author(s)

Johannes Rainer

writeMzTabData Export an MzTab object as mzTab file.

Description

writeMzTabData exports an MzTab object as mzTab file. Note that the comment section "COM"
are not written out.

Usage

writeMzTabData(
object,
file,
what = c("MT", "PEP", "PRT", "PSM", "SML", "SMF", "SME")

)

Arguments

object MzTab object, either read in by MzTab() or assembled.

file character(1) with the file name.

what character with names of the sections to be written out. Expected sections are
"MT", "PEP", "PRT", "PSM", "SML", "SMF", or "SME".

Author(s)

Steffen Neumann

Index

∗ MSnExp
MSnExp-class, 79

∗ OnDiskMSnExp
OnDiskMSnExp-class, 106

∗ ProcessingStep
ProcessingStep-class, 123

∗ classes
FeatComp-class, 43
FeaturesOfInterest-class, 45
MIAPE-class, 72
MSmap-class, 75
MSnExp-class, 79
MSnProcess-class, 82
MSnSet-class, 83
MSnSetList-class, 89
MzTab-class, 97
OnDiskMSnExp-class, 106
ProcessingStep-class, 123
pSet-class, 124
ReporterIons-class, 147
Spectrum-class, 151
Spectrum1-class, 153
Spectrum2-class, 154

∗ datasets
iTRAQ4, 57
itraqdata, 58
TMT6, 155

∗ documentation, internal
missing-data, 74

∗ file
readMgfData, 133
readMSnSet, 136
writeMgfData-methods, 157

∗ internal
Deprecated, 36

∗ manip
readMSnSet, 136

∗ methods
addIdentificationData-methods, 4
bin-methods, 10
calculateFragments-methods, 11
clean-methods, 23
compareSpectra-methods, 33

estimateNoise-methods, 39
extractPrecSpectra-methods, 41
normalise-methods, 102
pickPeaks-methods, 113
plot-methods, 114
plot.Spectrum.Spectrum-methods,

116
plot2d-methods, 118
plotDensity-methods, 119
plotMzDelta-methods, 120
plotNA-methods, 121
purityCorrect-methods, 127
quantify-methods, 130
removeNoId-methods, 143
removePeaks-methods, 144
removeReporters-methods, 146
smooth-methods, 150
trimMz-methods, 156
updateObject-methods, 157
writeMgfData-methods, 157

∗ spectra combination functions
consensusSpectrum, 34
meanMzInts, 69

[,FoICollection,ANY,ANY,ANY-method
(FeaturesOfInterest-class), 45

[,FoICollection,ANY,ANY-method
(FeaturesOfInterest-class), 45

[,FoICollection-method
(FeaturesOfInterest-class), 45

[,MChromatograms,ANY,ANY,ANY-method
(MChromatograms), 61

[,MSnSet,ANY,ANY,ANY-method
(MSnSet-class), 83

[,MSnSet,ANY,ANY-method (MSnSet-class),
83

[,MSnSet-method (MSnSet-class), 83
[,MSnSetList,ANY,ANY,ANY-method

(MSnSetList-class), 89
[,MSnSetList,ANY,missing,missing-method

(MSnSetList-class), 89
[,OnDiskMSnExp,ANY,ANY,ANY-method

(OnDiskMSnExp-class), 106
[,OnDiskMSnExp,logicalOrNumeric,missing,missing-method

161

162 INDEX

(OnDiskMSnExp-class), 106
[,ReporterIons,ANY,ANY,ANY-method

(ReporterIons-class), 147
[,ReporterIons,ANY,ANY-method

(ReporterIons-class), 147
[,ReporterIons-method

(ReporterIons-class), 147
[,pSet,ANY,ANY,ANY-method (pSet-class),

124
[,pSet,ANY,ANY-method (pSet-class), 124
[,pSet-method (pSet-class), 124
[<-,MChromatograms,ANY,ANY,ANY-method

(MChromatograms), 61
[<-,MChromatograms-method

(MChromatograms), 61
[[,FoICollection,ANY,ANY-method

(FeaturesOfInterest-class), 45
[[,FoICollection-method

(FeaturesOfInterest-class), 45
[[,MSnSetList,ANY,ANY-method

(MSnSetList-class), 89
[[,MSnSetList,ANY,missing-method

(MSnSetList-class), 89
[[,OnDiskMSnExp,ANY,ANY,missing-method

(OnDiskMSnExp-class), 106
[[,OnDiskMSnExp,ANY,ANY-method

(OnDiskMSnExp-class), 106
[[,OnDiskMSnExp,ANY,missing,missing-method

(OnDiskMSnExp-class), 106
[[,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
[[,pSet,ANY,ANY-method (pSet-class), 124
[[,pSet-method (pSet-class), 124
$,MChromatograms-method

(MChromatograms), 61
$,pSet-method (pSet-class), 124
$<-,MChromatograms-method

(MChromatograms), 61
$<-,pSet-method (pSet-class), 124

abstract,MIAPE-method (MIAPE-class), 72
abstract,pSet-method (pSet-class), 124
acquisitionNum (Spectrum-class), 151
acquisitionNum,MSnSet-method

(MSnSet-class), 83
acquisitionNum,MSpectra-method

(MSpectra), 91
acquisitionNum,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
acquisitionNum,pSet-method

(pSet-class), 124
acquisitionNum,Spectrum-method

(Spectrum-class), 151

addFeaturesOfInterest
(FeaturesOfInterest-class), 45

addFeaturesOfInterest,FeaturesOfInterest,FoICollection-method
(FeaturesOfInterest-class), 45

addFeaturesOfInterest-methods
(FeaturesOfInterest-class), 45

addIdentificationData, 80, 87, 131
addIdentificationData

(addIdentificationData-methods),
4

addIdentificationData,MSnExp,character-method
(MSnExp-class), 79

addIdentificationData,MSnExp,data.frame-method
(MSnExp-class), 79

addIdentificationData,MSnExp,mzID-method
(MSnExp-class), 79

addIdentificationData,MSnExp,mzIDClasses-method
(MSnExp-class), 79

addIdentificationData,MSnExp,mzIDCollection-method
(MSnExp-class), 79

addIdentificationData,MSnExp,mzRident-method
(MSnExp-class), 79

addIdentificationData,MSnSet,character-method
(MSnSet-class), 83

addIdentificationData,MSnSet,data.frame-method
(MSnSet-class), 83

addIdentificationData,MSnSet,mzID-method
(MSnSet-class), 83

addIdentificationData,MSnSet,mzIDClasses-method
(MSnSet-class), 83

addIdentificationData,MSnSet,mzIDCollection-method
(MSnSet-class), 83

addIdentificationData,MSnSet,mzRident-method
(MSnSet-class), 83

addIdentificationData-methods, 4
addMSnSetMetadata (MSnSet-class), 83
aggregationFun (Chromatogram), 13
aggvar, 7, 26
alignRt,Chromatogram,Chromatogram-method

(Chromatogram), 13
alignRt,MChromatograms,Chromatogram-method

(MChromatograms), 61
all.equal,MSnExp,MSnExp-method

(MSnExp-class), 79
all.equal,MSnExp,OnDiskMSnExp-method

(MSnExp-class), 79
all.equal,OnDiskMSnExp,MSnExp-method

(MSnExp-class), 79
all.equal,OnDiskMSnExp,OnDiskMSnExp-method

(MSnExp-class), 79
analyser (MIAPE-class), 72
analyser,MIAPE-method (MIAPE-class), 72

INDEX 163

analyser,MSnSet-method (MSnSet-class),
83

analyser,pSet-method (pSet-class), 124
analyserDetails (MIAPE-class), 72
analyserDetails,MIAPE-method

(MIAPE-class), 72
analyserDetails,pSet-method

(pSet-class), 124
analyzer (MIAPE-class), 72
analyzer,MIAPE-method (MIAPE-class), 72
analyzer,MSnSet-method (MSnSet-class),

83
analyzer,pSet-method (pSet-class), 124
analyzerDetails (MIAPE-class), 72
analyzerDetails,MIAPE-method

(MIAPE-class), 72
analyzerDetails,pSet-method

(pSet-class), 124
AnnotatedDataFrame, 79, 84, 89, 106, 107,

124, 133, 134
as, 8
as.data.frame,Chromatogram-method

(Chromatogram), 13
as.data.frame.MSnExp (MSnExp-class), 79
as.data.frame.MSnSet (MSnSet-class), 83
as.data.frame.Spectrum

(Spectrum-class), 151
as.ExpressionSet.MSnSet (MSnSet-class),

83
as.matrix.FoICollection

(FeaturesOfInterest-class), 45
as.MIAME.MIAPE (MIAPE-class), 72
as.MSnExp.OnDiskMSnExp

(OnDiskMSnExp-class), 106
as.MSnSet.ExpressionSet (MSnSet-class),

83
AssayData, 84
assayData, 84
assayData,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
assayData,pSet-method (pSet-class), 124
averageMSnSet, 9, 44

bin, 33, 34, 80, 152
bin (bin-methods), 10
bin,Chromatogram-method (Chromatogram),

13
bin,MChromatograms-method

(MChromatograms), 61
bin,MSnExp-method (MSnExp-class), 79
bin,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106

bin,Spectrum-method (Spectrum-class),
151

bin-methods, 10
bpi (OnDiskMSnExp-class), 106
bpi,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
bpparam(), 28

c,MChromatograms-method
(MChromatograms), 61

calculateFragments, 116, 117, 155
calculateFragments

(calculateFragments-methods),
11

calculateFragments,character,missing-method
(calculateFragments-methods),
11

calculateFragments,character,Spectrum2-method
(Spectrum2-class), 154

calculateFragments-methods, 11
centroided (Spectrum-class), 151
centroided,MSpectra-method (MSpectra),

91
centroided,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
centroided,pSet-method (pSet-class), 124
centroided,Spectrum-method

(Spectrum-class), 151
centroided<- (Spectrum-class), 151
centroided<-,OnDiskMSnExp,logical-method

(OnDiskMSnExp-class), 106
centroided<-,pSet,ANY-method

(pSet-class), 124
centroided<-,pSet,logical-method

(pSet-class), 124
centroided<-,Spectrum,ANY-method

(Spectrum-class), 151
centroided<-,Spectrum,logical-method

(Spectrum-class), 151
Chromatogram, 13, 21–23, 116
chromatogram, 82
chromatogram

(chromatogram,MSnExp-method),
20

Chromatogram(), 17, 61, 64–67
chromatogram(), 13, 66
chromatogram,MSnExp-method, 20
Chromatogram-class (Chromatogram), 13
class:MIAPE (MIAPE-class), 72
class:MSnExp (MSnExp-class), 79
class:MSnProcess (MSnProcess-class), 82
class:MSnSet (MSnSet-class), 83
class:MzTab (MzTab-class), 97

164 INDEX

class:NAnnotatedDataFrame (Deprecated),
36

class:OnDiskMSnExp
(OnDiskMSnExp-class), 106

class:pSet (pSet-class), 124
class:ReporterIons

(ReporterIons-class), 147
class:Spectrum (Spectrum-class), 151
class:Spectrum1 (Spectrum1-class), 153
class:Spectrum2 (Spectrum2-class), 154
clean, 10, 34, 80, 83, 106, 110, 114, 144–146,

151, 152, 156
clean (clean-methods), 23
clean(), 16, 18, 67, 95
clean,Chromatogram-method

(Chromatogram), 13
clean,MChromatograms-method

(MChromatograms), 61
clean,MSnExp-method (MSnExp-class), 79
clean,MSpectra-method (MSpectra), 91
clean,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
clean,Spectrum-method (Spectrum-class),

151
clean-methods, 23
closest(), 17, 18
coerce,AnnotatedDataFrame,list-method

(pSet-class), 124
coerce,ExpressionSet,MSnSet-method

(MSnSet-class), 83
coerce,FoICollection,matrix-method

(FeaturesOfInterest-class), 45
coerce,IBSpectra,MSnSet-method

(MSnSet-class), 83
coerce,matrix,MChromatograms-method

(MChromatograms), 61
coerce,MIAPE,MIAME-method

(MIAPE-class), 72
coerce,MIAxE,list-method (pSet-class),

124
coerce,MSmap,data.frame-method

(MSmap-class), 75
coerce,MSnExp,data.frame-method

(MSnExp-class), 79
coerce,MSnExp,MSpectra-method

(MSnExp-class), 79
coerce,MSnProcess,list-method

(MSnProcess-class), 82
coerce,MSnSet,data.frame-method

(MSnSet-class), 83
coerce,MSnSet,ExpressionSet-method

(MSnSet-class), 83

coerce,MSnSet,SummarizedExperiment-method
(MSnSet-class), 83

coerce,MSpectra,list-method (MSpectra),
91

coerce,MSpectra,MSnExp-method
(MSpectra), 91

coerce,mzRident,data.frame-method
(readMzIdData), 138

coerce,MzTab,MSnSetList-method
(MzTab-class), 97

coerce,OnDiskMSnExp,MSnExp-method
(OnDiskMSnExp-class), 106

coerce,Spectrum,data.frame-method
(Spectrum-class), 151

coerce,SummarizedExperiment,MSnSet-method
(MSnSet-class), 83

collisionEnergy (Spectrum2-class), 154
collisionEnergy,MSpectra-method

(MSpectra), 91
collisionEnergy,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
collisionEnergy,pSet-method

(pSet-class), 124
collisionEnergy,Spectrum-method

(Spectrum2-class), 154
colnames<-,MChromatograms,ANY-method

(MChromatograms), 61
colnames<-,MChromatograms-method

(MChromatograms), 61
combine,MIAPE,MIAPE-method

(MIAPE-class), 72
combine,MSnProcess,MSnProcess-method

(MSnProcess-class), 82
combine,MSnSet,MSnSet-method

(MSnSet-class), 83
combineFeatures, 7, 24, 55, 103–105, 130
combineFeatures(), 45
combineFeatures,MSnSet-method

(combineFeatures), 24
combineSpectra

(combineSpectra,MSnExp-method),
27

combineSpectra,MSnExp-method, 27
combineSpectra,MSpectra-method

(combineSpectra,MSnExp-method),
27

combineSpectraMovingWindow, 29
combineSpectraMovingWindow(), 38, 71
comments (MzTab-class), 97
common (FeatComp-class), 43
common,FeatComp-method

(FeatComp-class), 43

INDEX 165

common,methods (FeatComp-class), 43
commonFeatureNames, 32, 89, 90
compareChromatograms (Chromatogram), 13
compareChromatograms,Chromatogram,Chromatogram-method

(Chromatogram), 13
compareChromatograms,MChromatograms,MChromatograms-method

(MChromatograms), 61
compareChromatograms,MChromatograms,missing-method

(MChromatograms), 61
compareMSnSets, 33
compareSpectra, 80, 152
compareSpectra

(compareSpectra-methods), 33
compareSpectra,MSnExp,missing-method

(MSnExp-class), 79
compareSpectra,OnDiskMSnExp,missing-method

(OnDiskMSnExp-class), 106
compareSpectra,Spectrum,Spectrum-method

(Spectrum-class), 151
compareSpectra-methods, 33
compfnames, 9
compfnames (FeatComp-class), 43
compfnames,list,missing-method

(FeatComp-class), 43
compfnames,MSnSet,MSnSet-method

(FeatComp-class), 43
compfnames-methods (FeatComp-class), 43
consensusSpectrum, 34, 71

data, 147
DataFrame, 94
DataFrame(), 42
Deprecated, 36
description,FeaturesOfInterest-method

(FeaturesOfInterest-class), 45
description,FoICollection-method

(FeaturesOfInterest-class), 45
description,MSnSet-method

(MSnSet-class), 83
description,pSet-method (pSet-class),

124
description,ReporterIons-method

(ReporterIons-class), 147
detectorType (MIAPE-class), 72
detectorType,MIAPE-method

(MIAPE-class), 72
detectorType,MSnSet-method

(MSnSet-class), 83
detectorType,pSet-method (pSet-class),

124
dim (pSet-class), 124
dim,MSmap-method (MSmap-class), 75
dim,MSnSet-method (MSnSet-class), 83

dim,NAnnotatedDataFrame-method
(Deprecated), 36

dim,pSet-method (pSet-class), 124
droplevels, 86
droplevels.MSnSet (MSnSet-class), 83

eSet, 79, 83–85, 88, 107, 124, 127
estimateMzResolution

(estimateMzResolution,MSnExp-method),
36

estimateMzResolution(), 38, 71
estimateMzResolution,MSnExp-method, 36
estimateMzResolution,Spectrum-method

(estimateMzResolution,MSnExp-method),
36

estimateMzScattering, 38
estimateMzScattering(), 31, 70, 71
estimateNoise, 80, 114, 152
estimateNoise (estimateNoise-methods),

39
estimateNoise,MSnExp-method

(MSnExp-class), 79
estimateNoise,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
estimateNoise,Spectrum-method

(Spectrum-class), 151
estimateNoise-methods, 39
executeProcessingStep

(ProcessingStep-class), 123
expandFeatureVars, 40
expemail (MIAPE-class), 72
expemail,MIAPE-method (MIAPE-class), 72
expemail,MSnSet-method (MSnSet-class),

83
expemail,pSet-method (pSet-class), 124
experimentData, 79, 84, 107, 124
experimentData,pSet-method

(pSet-class), 124
experimentData<-,MSnSet,MIAPE-method

(MSnSet-class), 83
expinfo,MIAPE-method (MIAPE-class), 72
ExpressionSet, 83, 84, 88
exprs, 84, 103
exprs,MSnSet-method (MSnSet-class), 83
exptitle (MIAPE-class), 72
exptitle,MIAPE-method (MIAPE-class), 72
exptitle,MSnSet-method (MSnSet-class),

83
exptitle,pSet-method (pSet-class), 124
extractPrecSpectra, 80, 115
extractPrecSpectra

(extractPrecSpectra-methods),
41

166 INDEX

extractPrecSpectra,MSnExp,numeric-method
(MSnExp-class), 79

extractPrecSpectra,MSnExp-method
(MSnExp-class), 79

extractPrecSpectra,OnDiskMSnExp,numeric-method
(OnDiskMSnExp-class), 106

extractPrecSpectra-methods, 41
extractSpectra (Deprecated), 36
extractSpectraData, 41

factorsAsStrings, 42
fData,MChromatograms-method

(MChromatograms), 61
fData,MSnSetList-method

(MSnSetList-class), 89
fData,pSet-method (pSet-class), 124
fData<-,MChromatograms,ANY-method

(MChromatograms), 61
fData<-,MSnSet,data.frame-method

(MSnSet-class), 83
fData<-,MSnSetList,DataFrame-method

(MSnSetList-class), 89
fData<-,pSet,data.frame-method

(pSet-class), 124
FeatComp-class, 43
featureCV, 25, 26, 44
featureData, 79, 84, 107, 124
featureData,MChromatograms-method

(MChromatograms), 61
featureData,pSet-method (pSet-class),

124
featureData<-,MChromatograms,ANY-method

(MChromatograms), 61
featureNames,MChromatograms-method

(MChromatograms), 61
featureNames,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
featureNames,pSet-method (pSet-class),

124
featureNames<-,MChromatograms-method

(MChromatograms), 61
featureNames<-,OnDiskMSnExp,ANY-method

(OnDiskMSnExp-class), 106
featureNames<-,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
FeaturesOfInterest

(FeaturesOfInterest-class), 45
FeaturesOfInterest,character,character,missing-method

(FeaturesOfInterest-class), 45
FeaturesOfInterest,character,character,MSnSet-method

(FeaturesOfInterest-class), 45
FeaturesOfInterest-class, 45

FeaturesOfInterest-methods
(FeaturesOfInterest-class), 45

fileName,MSmap-method (MSmap-class), 75
fileName,MzTab-method (MzTab-class), 97
fileNames (pSet-class), 124
fileNames,MSmap-method (MSmap-class), 75
fileNames,MSnProcess-method

(MSnProcess-class), 82
fileNames,MSnSet-method (MSnSet-class),

83
fileNames,MzTab-method (MzTab-class), 97
fileNames,pSet-method (pSet-class), 124
fillUp, 48
filterAcquisitionNum (MSnExp-class), 79
filterAcquisitionNum,MSnExp-method

(MSnExp-class), 79
filterAcquisitionNum,OnDiskMSnExp-method

(MSnExp-class), 79
filterEmptySpectra (MSnExp-class), 79
filterEmptySpectra,MSnExp-method

(MSnExp-class), 79
filterEmptySpectra,OnDiskMSnExp-method

(MSnExp-class), 79
filterFile (MSnExp-class), 79
filterFile,MSnExp-method

(MSnExp-class), 79
filterFile,OnDiskMSnExp-method

(MSnExp-class), 79
filterIdentificationDataFrame, 5, 6, 48
filterIdentificationDataFrame(), 138
filterIntensity,Chromatogram-method

(Chromatogram), 13
filterIntensity,MChromatograms-method

(MChromatograms), 61
filterIsolationWindow (MSnExp-class), 79
filterIsolationWindow,MSnExp-method

(MSnExp-class), 79
filterMsLevel (MSnExp-class), 79
filterMsLevel,MSnExp-method

(MSnExp-class), 79
filterMsLevel,MSnSet-method

(MSnSet-class), 83
filterMsLevel,MSpectra-method

(MSpectra), 91
filterMsLevel,OnDiskMSnExp-method

(MSnExp-class), 79
filterMz, 81, 115
filterMz (trimMz-methods), 156
filterMz(), 94, 95
filterMz,MSnExp-method (MSnExp-class),

79
filterMz,MSpectra-method (MSpectra), 91

INDEX 167

filterMz,OnDiskMSnExp-method
(MSnExp-class), 79

filtermz,Spectrum,numeric-method
(Spectrum-class), 151

filterMz,Spectrum-method
(Spectrum-class), 151

filterMz-methods (trimMz-methods), 156
filterNA, 25, 122
filterNA (MSnSet-class), 83
filterNA,matrix-method (MSnSet-class),

83
filterNA,MSnSet-method (MSnSet-class),

83
filterPolarity (MSnExp-class), 79
filterPolarity,MSnExp-method

(MSnExp-class), 79
filterPolarity,OnDiskMSnExp-method

(MSnExp-class), 79
filterPrecursorMz (MSnExp-class), 79
filterPrecursorMz,MSnExp-method

(MSnExp-class), 79
filterPrecursorScan (MSnExp-class), 79
filterPrecursorScan,MSnExp-method

(MSnExp-class), 79
filterPrecursorScan,OnDiskMSnExp-method

(MSnExp-class), 79
filterRt, 115
filterRt (MSnExp-class), 79
filterRt,Chromatogram-method

(Chromatogram), 13
filterRt,MSnExp-method (MSnExp-class),

79
filterRt,OnDiskMSnExp-method

(MSnExp-class), 79
filterZero (MSnSet-class), 83
filterZero,matrix-method

(MSnSet-class), 83
filterZero,MSnSet-method

(MSnSet-class), 83
fnamesIn (FeaturesOfInterest-class), 45
fnamesIn,FeaturesOfInterest,data.frame-method

(FeaturesOfInterest-class), 45
fnamesIn,FeaturesOfInterest,matrix-method

(FeaturesOfInterest-class), 45
fnamesIn,FeaturesOfInterest,MSnSet-method

(FeaturesOfInterest-class), 45
fnamesIn-methods

(FeaturesOfInterest-class), 45
foi (FeaturesOfInterest-class), 45
foi,FeaturesOfInterest-method

(FeaturesOfInterest-class), 45
foi,FoICollection-method

(FeaturesOfInterest-class), 45
foi-methods (FeaturesOfInterest-class),

45
FoICollection

(FeaturesOfInterest-class), 45
FoICollection,list-method

(FeaturesOfInterest-class), 45
FoICollection,missing-method

(FeaturesOfInterest-class), 45
FoICollection-class

(FeaturesOfInterest-class), 45
FoICollection-methods

(FeaturesOfInterest-class), 45
formatRt, 49
fromFile (Spectrum-class), 151
fromFile,Chromatogram-method

(Chromatogram), 13
fromFile,MSnSet-method (MSnSet-class),

83
fromFile,MSpectra-method (MSpectra), 91
fromFile,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
fromFile,pSet-method (pSet-class), 124
fromFile,Spectrum-method

(Spectrum-class), 151
fvarLabels,MChromatograms-method

(MChromatograms), 61
fvarLabels,pSet-method (pSet-class), 124
fvarMetadata,pSet-method (pSet-class),

124

geom_histogram, 120
getEcols, 137
getEcols (grepEcols), 51
getVariableName, 50
grep, 51
grepEcols, 51, 137

hasChromatograms (hasSpectra), 52
hasSpectra, 52
header (pSet-class), 124
header,OnDiskMSnExp,missing-method

(OnDiskMSnExp-class), 106
header,OnDiskMSnExp,numeric-method

(OnDiskMSnExp-class), 106
header,pSet,missing-method

(pSet-class), 124
header,pSet,numeric-method

(pSet-class), 124
hist, 10

idSummary (MSnSet-class), 83

168 INDEX

idSummary,MSnExp-method (MSnExp-class),
79

idSummary,MSnSet-method (MSnSet-class),
83

image, 53
image,MSnSet-method (MSnSet-class), 83
image2 (MSnSet-class), 83
imageNA2, 52, 74
impute, 25, 86
impute,MSnSet-method, 53
instrumentCustomisations (MIAPE-class),

72
instrumentCustomisations,MIAPE-method

(MIAPE-class), 72
instrumentCustomisations,pSet-method

(pSet-class), 124
instrumentManufacturer (MIAPE-class), 72
instrumentManufacturer,MIAPE-method

(MIAPE-class), 72
instrumentManufacturer,pSet-method

(pSet-class), 124
instrumentModel (MIAPE-class), 72
instrumentModel,MIAPE-method

(MIAPE-class), 72
instrumentModel,pSet-method

(pSet-class), 124
intensity (Spectrum-class), 151
intensity,Chromatogram-method

(Chromatogram), 13
intensity,MSpectra-method (MSpectra), 91
intensity,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
intensity,pSet-method (pSet-class), 124
intensity,Spectrum-method

(Spectrum-class), 151
ionCount (Spectrum-class), 151
ionCount,MSpectra-method (MSpectra), 91
ionCount,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
ionCount,pSet-method (pSet-class), 124
ionCount,Spectrum-method

(Spectrum-class), 151
ionSource (MIAPE-class), 72
ionSource,MIAPE-method (MIAPE-class), 72
ionSource,MSnSet-method (MSnSet-class),

83
ionSource,pSet-method (pSet-class), 124
ionSourceDetails (MIAPE-class), 72
ionSourceDetails,MIAPE-method

(MIAPE-class), 72
ionSourceDetails,pSet-method

(pSet-class), 124

iPQF, 24, 26, 55, 58
is.na.MSnSet, 86
is.na.MSnSet (plotNA-methods), 121
isCentroided (Spectrum-class), 151
isCentroided(), 56
isCentroided,MSnExp-method

(MSnExp-class), 79
isCentroided,MSpectra-method

(MSpectra), 91
isCentroided,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
isCentroided,Spectrum-method

(Spectrum-class), 151
isCentroidedFromFile, 56, 108
isEmpty,Chromatogram-method

(Chromatogram), 13
isEmpty,environment-method

(Spectrum-class), 151
isEmpty,MChromatograms-method

(MChromatograms), 61
isEmpty,MSpectra-method (MSpectra), 91
isEmpty,Spectrum-method

(Spectrum-class), 151
isMSnbaseFastLoad (MSnbaseOptions), 78
isMSnbaseVerbose, 6
isMSnbaseVerbose (MSnbaseOptions), 78
isMSnbaseVerbose(), 134
isolationWindow, 81
isolationWindow,MSnExp-method

(MSnExp-class), 79
isolationWindowLowerMz (pSet-class), 124
isolationWindowLowerMz,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
isolationWindowLowerMz,pSet-method

(pSet-class), 124
isolationWindowUpperMz (pSet-class), 124
isolationWindowUpperMz,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
isolationWindowUpperMz,pSet-method

(pSet-class), 124
iTRAQ4, 57, 148, 156
iTRAQ5 (iTRAQ4), 57
iTRAQ8 (iTRAQ4), 57
iTRAQ9 (iTRAQ4), 57
itraqdata, 58

lapply,MSnSetList-method
(MSnSetList-class), 89

length (pSet-class), 124
length,Chromatogram-method

(Chromatogram), 13
length,FeaturesOfInterest-method

(FeaturesOfInterest-class), 45

INDEX 169

length,FoICollection-method
(FeaturesOfInterest-class), 45

length,MSnSetList-method
(MSnSetList-class), 89

length,OnDiskMSnExp-method
(OnDiskMSnExp-class), 106

length,pSet-method (pSet-class), 124
length,ReporterIons-method

(ReporterIons-class), 147
length-method (ReporterIons-class), 147
lengths,FoICollection-method

(FeaturesOfInterest-class), 45
listOf, 58
log,MSnSet-method (MSnSet-class), 83

ma.plot, 87
mad, 104
makeCamelCase, 59
makeImpuritiesMatrix

(purityCorrect-methods), 127
makeMTD (Deprecated), 36
makeNaData, 60
makeNaData2 (makeNaData), 60
makePEP (Deprecated), 36
makePRT (Deprecated), 36
MAplot,MSnSet-method (MSnSet-class), 83
MChromatograms, 18, 21, 22, 61
MChromatograms(), 17, 141
MChromatograms-class (MChromatograms),

61
mcols(), 91
meanMzInts, 35, 69
meanMzInts(), 27, 28, 30, 31, 35
meanSdPlot, 86
meanSdPlot,MSnSet-method

(MSnSet-class), 83
mergeFeatureVars (expandFeatureVars), 40
metadata,MzTab-method (MzTab-class), 97
MIAME, 73
MIAPE, 79, 84, 86, 107, 124, 126
MIAPE (MIAPE-class), 72
MIAPE-class, 72
MIAxE, 74
missing-data, 74
missingdata (missing-data), 74
moleculeEvidence (MzTab-class), 97
moleculeFeatures (MzTab-class), 97
ms2df (MSnSet-class), 83
MsCoreUtils::formatRt(), 49
MsCoreUtils::impute_matrix(), 53, 54
msInfo (MIAPE-class), 72
msInfo,MIAPE-method (MIAPE-class), 72
msInfo,MSnSet-method (MSnSet-class), 83

msInfo,pSet-method (pSet-class), 124
msLevel (Spectrum-class), 151
msLevel,Chromatogram-method

(Chromatogram), 13
msLevel,MSmap-method (MSmap-class), 75
msLevel,MSpectra-method (MSpectra), 91
msLevel,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
msLevel,pSet-method (pSet-class), 124
msLevel,Spectrum-method

(Spectrum-class), 151
MSmap (MSmap-class), 75
msMap (MSmap-class), 75
msMap,MSmap-method (MSmap-class), 75
MSmap,mzRpwiz-method (MSmap-class), 75
MSmap,mzRramp-method (MSmap-class), 75
MSmap,mzRraw-method (MSmap-class), 75
MSmap,OnDiskMSnExp-method

(MSmap-class), 75
MSmap-class, 75
MSmap-method (MSmap-class), 75
MSnbase-defunct (Deprecated), 36
MSnbase-deprecated (Deprecated), 36
MSnbaseOptions, 78
MSnExp, 4, 5, 13, 20, 21, 27, 36, 41, 42, 83, 84,

102, 106, 107, 110, 114, 115, 118,
119, 122, 124, 127, 130, 133–135,
144, 146, 147, 152–155, 157, 158

MSnExp (MSnExp-class), 79
MSnExp-class, 79
MSnProcess, 79, 84, 107, 124, 133
MSnProcess (MSnProcess-class), 82
MSnProcess-class, 82
MSnSet, 4, 5, 24, 25, 32, 33, 44, 45, 60, 83, 89,

90, 102, 103, 105, 127, 131, 136,
137, 139, 140, 144, 152

MSnSet (MSnSet-class), 83
msnset (itraqdata), 58
MSnSet-class, 83
msnset2 (itraqdata), 58
MSnSetList, 97, 139
MSnSetList (MSnSetList-class), 89
MSnSetList-class, 89
msnsets (MSnSetList-class), 89
MSpectra, 27, 42, 81, 91, 94
MSpectra-class (MSpectra), 91
multiLabels (Deprecated), 36
multiLabels,NAnnotatedDataFrame-method

(Deprecated), 36
multiplex (Deprecated), 36
multiplex,NAnnotatedDataFrame-method

(Deprecated), 36

170 INDEX

mva.pairs, 87
mz (Spectrum-class), 151
mz,Chromatogram-method (Chromatogram),

13
mz,MChromatograms-method

(MChromatograms), 61
mz,MSmap-method (MSmap-class), 75
mz,MSpectra-method (MSpectra), 91
mz,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
mz,pSet-method (pSet-class), 124
mz,ReporterIons-method

(ReporterIons-class), 147
mz,Spectrum-method (Spectrum-class), 151
mzR::writeMSData(), 159
mzRes (MSmap-class), 75
mzRes,MSmap-method (MSmap-class), 75
MzTab, 90, 139, 160
MzTab (MzTab-class), 97
MzTab-class, 97
mzTabMode (MzTab-class), 97
mzTabType (MzTab-class), 97

names,FeatComp-method (FeatComp-class),
43

names,FoICollection-method
(FeaturesOfInterest-class), 45

names,MSnSetList-method
(MSnSetList-class), 89

names,ReporterIons-method
(ReporterIons-class), 147

names<-,FoICollection,character-method
(FeaturesOfInterest-class), 45

names<-,MSnSetList,ANY-method
(MSnSetList-class), 89

NAnnotatedDataFrame (Deprecated), 36
NAnnotatedDataFrame-class (Deprecated),

36
naplot, 99
naset (impute,MSnSet-method), 53
navMS, 100
ncol,MSmap-method (MSmap-class), 75
nextMS (navMS), 100
nFeatures, 26, 101
normalise, 85
normalise (normalise-methods), 102
normalise(), 44
normalise,MSnExp-method

(normalise-methods), 102
normalise,MSnSet-method

(normalise-methods), 102
normalise,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106

normalise,Spectrum-method
(normalise-methods), 102

normalise,Spectrum2-method
(normalise-methods), 102

normalise-methods, 102
normalize, 110
normalize (normalise-methods), 102
normalize,Chromatogram-method

(Chromatogram), 13
normalize,MChromatograms-method

(MChromatograms), 61
normalize,MSnExp-method

(normalise-methods), 102
normalize,MSnSet-method

(normalise-methods), 102
normalize,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
normalize,Spectrum-method

(normalise-methods), 102
normalize,Spectrum2-method

(normalise-methods), 102
normalize-methods (normalise-methods),

102
normToReference, 103
notes,MIAPE-method (MIAPE-class), 72
notes,pSet-method (pSet-class), 124
notes<-,MIAPE-method (MIAPE-class), 72
npcv, 9, 104
nQuants, 86, 105
nrow,MSmap-method (MSmap-class), 75
NTR, 24, 26
NTR (normToReference), 103

objlog (MSnSetList-class), 89
OnDiskMSnExp, 13, 20, 21, 27, 36, 41, 56, 75,

78, 82, 114, 123, 124, 126, 135, 158
OnDiskMSnExp (OnDiskMSnExp-class), 106
OnDiskMSnExp-class, 106
otherInfo,MIAPE-method (MIAPE-class), 72

par, 117
pData,MChromatograms-method

(MChromatograms), 61
pData,pSet-method (pSet-class), 124
pData<-,MChromatograms,data.frame-method

(MChromatograms), 61
pData<-,MSnSet,data.frame-method

(MSnSet-class), 83
pData<-,pSet,ANY-method (pSet-class),

124
peaksCount (Spectrum-class), 151
peaksCount,MSpectra,ANY-method

(MSpectra), 91

INDEX 171

peaksCount,OnDiskMSnExp,missing-method
(OnDiskMSnExp-class), 106

peaksCount,OnDiskMSnExp,numeric-method
(OnDiskMSnExp-class), 106

peaksCount,pSet,missing-method
(pSet-class), 124

peaksCount,pSet,numeric-method
(pSet-class), 124

peaksCount,Spectrum,missing-method
(Spectrum-class), 151

peptides,MzTab-method (MzTab-class), 97
phenoData, 79, 84, 106, 124
phenoData,MChromatograms-method

(MChromatograms), 61
phenoData,pSet-method (pSet-class), 124
phenoData<-,pSet,ANY-method

(pSet-class), 124
pickPeaks, 10, 34, 39, 80, 151, 153
pickPeaks (pickPeaks-methods), 113
pickPeaks(), 94, 95
pickPeaks,MSnExp-method (MSnExp-class),

79
pickPeaks,MSpectra-method (MSpectra), 91
pickPeaks,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
pickPeaks,Spectrum-method

(Spectrum-class), 151
pickPeaks-methods, 113
plot (plot-methods), 114
plot,Chromatogram,ANY-method

(Chromatogram), 13
plot,MChromatograms,ANY-method

(MChromatograms), 61
plot,MSmap,missing-method

(MSmap-class), 75
plot,MSnExp (MSnExp-class), 79
plot,MSnExp,missing-method

(MSnExp-class), 79
plot,Spectrum,missing-method

(plot-methods), 114
plot,Spectrum,Spectrum-method

(plot.Spectrum.Spectrum-methods),
116

plot,Spectrum-method (plot-methods), 114
plot,Spectrum2,character-method

(plot-methods), 114
plot-methods, 114
plot.default, 117
plot.MSnExp, 80
plot.MSnExp (plot-methods), 114
plot.Spectrum, 117, 153
plot.Spectrum (plot-methods), 114

plot.Spectrum.character, 153
plot.Spectrum.Spectrum, 116, 153
plot.Spectrum.Spectrum

(plot.Spectrum.Spectrum-methods),
116

plot.Spectrum.Spectrum-methods, 116
plot2d, 80, 119, 121
plot2d (plot2d-methods), 118
plot2d,data.frame-method

(plot2d-methods), 118
plot2d,MSnExp-method (plot2d-methods),

118
plot2d-methods, 118
plot3D (MSmap-class), 75
plot3D,MSmap-method (MSmap-class), 75
plotDensity, 80, 119, 121
plotDensity (plotDensity-methods), 119
plotDensity,data.frame-method

(plotDensity-methods), 119
plotDensity,MSnExp-method

(plotDensity-methods), 119
plotDensity-methods, 119
plotMzDelta, 80, 119
plotMzDelta (plotMzDelta-methods), 120
plotMzDelta,MSnExp-method

(plotMzDelta-methods), 120
plotMzDelta,mzRramp-method

(plotMzDelta-methods), 120
plotMzDelta-methods, 120
plotNA, 74, 86, 87
plotNA (plotNA-methods), 121
plotNA,matrix-method (plotNA-methods),

121
plotNA,MSnSet-method (plotNA-methods),

121
plotNA-methods, 121
polarity (Spectrum-class), 151
polarity,MChromatograms-method

(MChromatograms), 61
polarity,MSpectra-method (MSpectra), 91
polarity,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
polarity,pSet-method (pSet-class), 124
polarity,Spectrum-method

(Spectrum-class), 151
precAcquisitionNum (Spectrum2-class),

154
precAcquisitionNum,pSet-method

(pSet-class), 124
precAcquisitionNum,Spectrum-method

(Spectrum2-class), 154
precScanNum (Spectrum2-class), 154

172 INDEX

precScanNum,MSpectra-method (MSpectra),
91

precScanNum,OnDiskMSnExp-method
(OnDiskMSnExp-class), 106

precScanNum,pSet-method (pSet-class),
124

precScanNum,Spectrum-method
(Spectrum2-class), 154

precSelection, 122
precSelectionTable (precSelection), 122
precursorCharge (Spectrum2-class), 154
precursorCharge,MSpectra-method

(MSpectra), 91
precursorCharge,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
precursorCharge,pSet-method

(pSet-class), 124
precursorCharge,Spectrum-method

(Spectrum2-class), 154
precursorIntensity (Spectrum2-class),

154
precursorIntensity,MSpectra-method

(MSpectra), 91
precursorIntensity,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
precursorIntensity,pSet-method

(pSet-class), 124
precursorIntensity,Spectrum-method

(Spectrum2-class), 154
precursorMz, 120
precursorMz (Spectrum2-class), 154
precursorMz,Chromatogram-method

(Chromatogram), 13
precursorMz,MChromatograms-method

(MChromatograms), 61
precursorMz,MSpectra-method (MSpectra),

91
precursorMz,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
precursorMz,pSet-method (pSet-class),

124
precursorMz,Spectrum-method

(Spectrum2-class), 154
prevMS (navMS), 100
processingData (pSet-class), 124
processingData,MSnSet-method

(MSnSet-class), 83
processingData,pSet-method

(pSet-class), 124
ProcessingStep, 106
ProcessingStep (ProcessingStep-class),

123

ProcessingStep-class, 123
ProcessingStep:OnDiskMSnExp

(ProcessingStep-class), 123
productMz,Chromatogram-method

(Chromatogram), 13
productMz,MChromatograms-method

(MChromatograms), 61
proteins,MzTab-method (MzTab-class), 97
protocolData, 79, 84, 107, 124
protocolData,pSet-method (pSet-class),

124
pSet, 79, 80, 82, 84, 106, 107, 110
pSet (pSet-class), 124
pSet-class, 124
psms,MzTab-method (MzTab-class), 97
pubMedIds,MIAPE-method (MIAPE-class), 72
pubMedIds,pSet-method (pSet-class), 124
pubMedIds<-,MIAPE-method (MIAPE-class),

72
purityCorrect, 85
purityCorrect (purityCorrect-methods),

127
purityCorrect,MSnSet,matrix-method

(MSnSet-class), 83
purityCorrect,MSnSet-method

(MSnSet-class), 83
purityCorrect-methods, 127

qual (MSnSet-class), 83
qual,MSnSet-method (MSnSet-class), 83
quantify, 57, 58, 80, 84, 88, 147, 153, 155
quantify (quantify-methods), 130
quantify,MSnExp,character-method

(MSnExp-class), 79
quantify,MSnExp-method (MSnExp-class),

79
quantify,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
quantify,OnMSnExp-method

(MSnExp-class), 79
quantify,Spectrum,character-method

(Spectrum-class), 151
quantify,Spectrum-method

(Spectrum-class), 151
quantify-methods, 130

read.AnnotatedDataFrame, 136, 137
read.csv, 137
read.MIAME, 136, 137
read.table, 136, 137
readExpressionSet, 136
readLines, 51, 136
readMgfData, 133, 158

INDEX 173

readMgfData(), 135
readMSData, 79, 82, 106, 110, 133, 134
readMSData(), 95, 159
readMSData2 (readMSData), 134
readMSnSet, 84, 88, 136
readMSnSet2, 51, 84
readMSnSet2 (readMSnSet), 136
readMzIdData, 6, 138
readMzIdData(), 49
readMzTabData, 139
readMzTabData_v0.9, 139, 140
readMzXMLData (Deprecated), 36
readSRMData, 141
reduce, 8, 49
reduce,data.frame-method, 142
removeMultipleAssignment, 131
removeMultipleAssignment

(MSnSet-class), 83
removeMultipleAssignment,MSnExp-method

(MSnExp-class), 79
removeMultipleAssignment,MSnSet-method

(MSnSet-class), 83
removeMultipleAssignment-method

(MSnSet-class), 83
removeNoId, 80, 87
removeNoId (removeNoId-methods), 143
removeNoId,MSnExp-method

(MSnExp-class), 79
removeNoId,MSnSet-method

(MSnSet-class), 83
removeNoId-methods, 143
removePeaks, 10, 23, 34, 80, 83, 106, 110,

114, 146, 151, 153, 156
removePeaks (removePeaks-methods), 144
removePeaks(), 95
removePeaks,MSnExp-method

(MSnExp-class), 79
removePeaks,MSpectra-method (MSpectra),

91
removePeaks,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
removePeaks,Spectrum-method

(Spectrum-class), 151
removePeaks-methods, 144
removeReporters, 80, 155
removeReporters

(removeReporters-methods), 146
removeReporters,MSnExp-method

(MSnExp-class), 79
removeReporters,OnDiskMSnExp-method

(MSnExp-class), 79
removeReporters,Spectrum-method

(Spectrum2-class), 154
removeReporters-methods, 146
reporterColors (ReporterIons-class), 147
reporterColors,ReporterIons-method

(ReporterIons-class), 147
reporterColors-method

(ReporterIons-class), 147
reporterColours (ReporterIons-class),

147
reporterColours,ReporterIons-method

(ReporterIons-class), 147
reporterColours-method

(ReporterIons-class), 147
ReporterIons, 57, 115, 120, 130, 131, 146,

155
ReporterIons (ReporterIons-class), 147
ReporterIons-class, 147
reporterNames (ReporterIons-class), 147
reporterNames,ReporterIons-method

(ReporterIons-class), 147
reporterNames-method

(ReporterIons-class), 147
reporterNames<- (ReporterIons-class),

147
reporterNames<-,ReporterIons,ANY-method

(ReporterIons-class), 147
reporterNames<-,ReporterIons,character-method

(ReporterIons-class), 147
reporterNames<-,ReporterIons-method

(ReporterIons-class), 147
requiredFvarLabels (selectFeatureData),

149
rmFeaturesOfInterest

(FeaturesOfInterest-class), 45
rmFeaturesOfInterest,FoICollection,numeric-method

(FeaturesOfInterest-class), 45
rmFeaturesOfInterest-methods

(FeaturesOfInterest-class), 45
round, 122
rownames<-,MChromatograms-method

(MChromatograms), 61
rtime (Spectrum-class), 151
rtime,Chromatogram-method

(Chromatogram), 13
rtime,MSmap-method (MSmap-class), 75
rtime,MSpectra-method (MSpectra), 91
rtime,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
rtime,pSet-method (pSet-class), 124
rtime,Spectrum-method (Spectrum-class),

151

sampleNames,MChromatograms-method

174 INDEX

(MChromatograms), 61
sampleNames,pSet-method (pSet-class),

124
sampleNames<-,MChromatograms,ANY-method

(MChromatograms), 61
sampleNames<-,pSet,character-method

(pSet-class), 124
samples,MIAPE-method (MIAPE-class), 72
sapply,MSnSetList-method

(MSnSetList-class), 89
scale, 102
scale,MSnSet-method

(normalise-methods), 102
scanIndex (Spectrum-class), 151
scanIndex,MSpectra-method (MSpectra), 91
scanIndex,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
scanIndex,pSet-method (pSet-class), 124
scanIndex,Spectrum-method

(Spectrum-class), 151
selectFeatureData, 149
setMSnbaseFastLoad (MSnbaseOptions), 78
setMSnbaseParallelThresh

(MSnbaseOptions), 78
setMSnbaseVerbose (MSnbaseOptions), 78
show,Chromatogram-method

(Chromatogram), 13
show,FeatComp-method (FeatComp-class),

43
show,FeaturesOfInterest-method

(FeaturesOfInterest-class), 45
show,FoICollection-method

(FeaturesOfInterest-class), 45
show,MChromatograms-method

(MChromatograms), 61
show,MIAPE-method (MIAPE-class), 72
show,MSmap-method (MSmap-class), 75
show,MSnExp-method (MSnExp-class), 79
show,MSnProcess-method

(MSnProcess-class), 82
show,MSnSet-method (MSnSet-class), 83
show,MSnSetList-method

(MSnSetList-class), 89
show,MSpectra-method (MSpectra), 91
show,MzTab-method (MzTab-class), 97
show,NAnnotatedDataFrame-method

(Deprecated), 36
show,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
show,ProcessingStep-method

(ProcessingStep-class), 123
show,ReporterIons-method

(ReporterIons-class), 147
show,Spectrum-method (Spectrum-class),

151
SimpleList, 94
smallMolecules (MzTab-class), 97
smooth, 10, 34, 80, 114, 153
smooth (smooth-methods), 150
smooth(), 94, 95
smooth,MSnExp-method (MSnExp-class), 79
smooth,MSpectra-method (MSpectra), 91
smooth,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
smooth,Spectrum-method

(Spectrum-class), 151
smooth-methods, 150
smoothed (Spectrum-class), 151
smoothed,MSpectra-method (MSpectra), 91
smoothed,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
smoothed,pSet-method (pSet-class), 124
smoothed,Spectrum-method

(Spectrum-class), 151
smoothed<- (Spectrum-class), 151
smoothed<-,OnDiskMSnExp,logical-method

(OnDiskMSnExp-class), 106
smoothed<-,pSet,ANY-method

(pSet-class), 124
smoothed<-,pSet,logical-method

(pSet-class), 124
smoothed<-,Spectrum,ANY-method

(Spectrum-class), 151
smoothed<-,Spectrum,logical-method

(Spectrum-class), 151
spectra (pSet-class), 124
spectra,MSnExp-method (MSnExp-class), 79
spectra,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
spectra,pSet-method (pSet-class), 124
Spectra::Spectra, 41
Spectra::Spectra(), 42
spectrapply (pSet-class), 124
spectrapply(), 78
spectrapply,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
spectrapply,pSet-method (pSet-class),

124
Spectrum, 27, 33, 35, 42, 79, 91, 93, 94, 102,

114, 115, 117, 124, 130, 133, 135,
146, 153–155, 157

Spectrum (Spectrum-class), 151
Spectrum-class, 151
Spectrum1, 35, 41, 79, 91, 94, 95, 109, 116,

INDEX 175

124, 151, 153–155
Spectrum1 (Spectrum1-class), 153
Spectrum1-class, 153
Spectrum2, 11, 12, 35, 41, 57, 73, 79, 91, 94,

102, 115, 116, 124, 147, 151,
153–155

Spectrum2 (Spectrum2-class), 154
Spectrum2-class, 154
split,MSnSet,character-method

(MSnSetList-class), 89
split,MSnSet,factor-method

(MSnSetList-class), 89
splitByFile (MSnExp-class), 79
splitByFile,MSnExp,factor-method

(MSnExp-class), 79
splitByFile,OnDiskMSnExp,factor-method

(MSnExp-class), 79
strsplit, 51
supsmu, 39, 113

t,MSmap-method (MSmap-class), 75
t.MSnSet (MSnSet-class), 83
tic (Spectrum-class), 151
tic,MSpectra-method (MSpectra), 91
tic,OnDiskMSnExp-method

(OnDiskMSnExp-class), 106
tic,pSet-method (pSet-class), 124
tic,Spectrum-method (Spectrum-class),

151
TMT10 (TMT6), 155
TMT10ETD (TMT6), 155
TMT10HCD (TMT6), 155
TMT11 (TMT6), 155
TMT11HCD (TMT6), 155
TMT16 (TMT6), 155
TMT16HCD (TMT6), 155
TMT6, 57, 148, 155
TMT6b (TMT6), 155
TMT7 (TMT6), 155
TMT7b (TMT6), 155
topN, 105
topN (MSnSet-class), 83
topN,matrix-method (MSnSet-class), 83
topN,MSnSet,MSnSet-method

(MSnSet-class), 83
topN,MSnSet-method (MSnSet-class), 83
transformIntensity (Chromatogram), 13
transformIntensity,Chromatogram-method

(Chromatogram), 13
transformIntensity,MChromatograms-method

(MChromatograms), 61
trimMz, 10, 23, 34, 81, 110, 114, 145, 151, 153
trimMz (trimMz-methods), 156

trimMz,MSnExp,numeric-method
(MSnExp-class), 79

trimMz,MSnExp-method (MSnExp-class), 79
trimMz,OnDiskMSnExp,numeric-method

(OnDiskMSnExp-class), 106
trimMz,Spectrum,numeric-method

(Spectrum-class), 151
trimMz,Spectrum-method

(Spectrum-class), 151
trimMz-methods, 156
trimws, 86
trimws (MSnSet-class), 83
trimws,data.frame-method

(MSnSet-class), 83
trimws,MSnSet-method (MSnSet-class), 83

unique1 (FeatComp-class), 43
unique1,FeatComp-method

(FeatComp-class), 43
unique1,methods (FeatComp-class), 43
unique2 (FeatComp-class), 43
unique2,FeatComp-method

(FeatComp-class), 43
unique2,methods (FeatComp-class), 43
unsplit,MSnSetList,factor-method

(MSnSetList-class), 89
updateFeatureNames (MSnSet-class), 83
updateFvarLabels (MSnSet-class), 83
updateObject, 157
updateObject,MSnExp-method

(updateObject-methods), 157
updateObject,Spectrum-method

(updateObject-methods), 157
updateObject-methods, 157
updateSampleNames (MSnSet-class), 83

validateOnDiskMSnExp
(OnDiskMSnExp-class), 106

varLabels,pSet-method (pSet-class), 124
varMetadata,pSet-method (pSet-class),

124
Versioned, 46, 74, 79, 83, 85, 107, 123, 124,

147, 152–154
VersionedBiobase, 79, 85, 107, 124
Versions, 79, 84, 107, 124
vsn2, 102

whichNA (makeNaData), 60
width (ReporterIons-class), 147
width,ReporterIons-method

(ReporterIons-class), 147
width-method (ReporterIons-class), 147
write, 82

176 INDEX

write.exprs, 88
write.exprs (MSnSet-class), 83
write.exprs,MSnSet-method

(MSnSet-class), 83
writeMgfData, 133
writeMgfData (writeMgfData-methods), 157
writeMgfData,MSnExp-method

(writeMgfData-methods), 157
writeMgfData,MSpectra-method

(MSpectra), 91
writeMgfData,Spectrum-method

(writeMgfData-methods), 157
writeMgfData-methods, 157
writeMSData

(writeMSData,MSnExp,character-method),
158

writeMSData(), 31
writeMSData,MSnExp,character-method,

158
writeMzTabData, 140, 160

	addIdentificationData-methods
	aggvar
	as
	averageMSnSet
	bin-methods
	calculateFragments-methods
	Chromatogram
	chromatogram,MSnExp-method
	clean-methods
	combineFeatures
	combineSpectra,MSnExp-method
	combineSpectraMovingWindow
	commonFeatureNames
	compareMSnSets
	compareSpectra-methods
	consensusSpectrum
	Deprecated
	estimateMzResolution,MSnExp-method
	estimateMzScattering
	estimateNoise-methods
	expandFeatureVars
	extractPrecSpectra-methods
	extractSpectraData
	factorsAsStrings
	FeatComp-class
	featureCV
	FeaturesOfInterest-class
	fillUp
	filterIdentificationDataFrame
	formatRt
	getVariableName
	grepEcols
	hasSpectra
	imageNA2
	impute,MSnSet-method
	iPQF
	isCentroidedFromFile
	iTRAQ4
	itraqdata
	listOf
	makeCamelCase
	makeNaData
	MChromatograms
	meanMzInts
	MIAPE-class
	missing-data
	MSmap-class
	MSnbaseOptions
	MSnExp-class
	MSnProcess-class
	MSnSet-class
	MSnSetList-class
	MSpectra
	MzTab-class
	naplot
	navMS
	nFeatures
	normalise-methods
	normToReference
	npcv
	nQuants
	OnDiskMSnExp-class
	pickPeaks-methods
	plot-methods
	plot.Spectrum.Spectrum-methods
	plot2d-methods
	plotDensity-methods
	plotMzDelta-methods
	plotNA-methods
	precSelection
	ProcessingStep-class
	pSet-class
	purityCorrect-methods
	quantify-methods
	readMgfData
	readMSData
	readMSnSet
	readMzIdData
	readMzTabData
	readMzTabData_v0.9
	readSRMData
	reduce,data.frame-method
	removeNoId-methods
	removePeaks-methods
	removeReporters-methods
	ReporterIons-class
	selectFeatureData
	smooth-methods
	Spectrum-class
	Spectrum1-class
	Spectrum2-class
	TMT6
	trimMz-methods
	updateObject-methods
	writeMgfData-methods
	writeMSData,MSnExp,character-method
	writeMzTabData
	Index

