Contents

Progenetix is an open data resource that provides curated individual cancer copy number variation (CNV) profiles along with associated metadata sourced from published oncogenomic studies and various data repositories. This vignette provides a comprehensive guide on accessing and utilizing metadata for samples or their corresponding individuals within the Progenetix database.

If your focus lies in cancer cell lines, you can access data from cancercelllines.org by setting the domain parameter to "cancercelllines.org" in pgxLoader function. This data repository originates from CNV profiling data of cell lines initially collected as part of Progenetix and currently includes additional types of genomic mutations.

1 Load library

library(pgxRpi)

1.1 pgxLoader function

This function loads various data from Progenetix database via the Beacon v2 API with some extensions (BeaconPlus).

The parameters of this function used in this tutorial:

  • type: A string specifying output data type. "individuals", "biosamples", "analyses", "filtering_terms", and "counts" are used in this tutorial.
  • filters: Identifiers used in public repositories, bio-ontology terms, or custom terms such as c("NCIT:C7376", "pgx:icdom-85003"). When multiple filters are used, they are combined using AND logic when the parameter type is "individuals", "biosamples", or "analyses"; OR logic when the parameter type is "counts".
  • individual_id: Identifiers used in the query database for identifying individuals.
  • biosample_id: Identifiers used in the query database for identifying biosamples.
  • codematches: A logical value determining whether to exclude samples from child concepts of specified filters in the ontology tree. If TRUE, only samples exactly matching the specified filters will be included. Do not use this parameter when filters include ontology-irrelevant filters such as pubmed or cohort identifiers. Default is FALSE.
  • filter_pattern: Optional string pattern to match against the label field of available filters. Only used when the parameter type is "filtering_terms". Default is NULL, which includes all filters.
  • limit: Integer to specify the number of returned profiles. Default is 0 (return all).
  • skip: Integer to specify the number of skipped profiles. E.g. if skip = 2, limit=500, the first 2*500=1000 profiles are skipped and the next 500 profiles are returned. Default is 0 (no skip).
  • use_https: A logical value indicating whether to use the HTTPS protocol. If TRUE, the domain will be prefixed with "https://"; otherwise, "http://" will be used. Default is TRUE.
  • dataset: A string specifying the dataset to query from the Beacon response. Default is NULL, which includes results from all datasets.
  • domain: A string specifying the domain of the query data resource. Default is "progenetix.org".
  • entry_point: A string specifying the entry point of the Beacon v2 API. Default is "beacon", resulting in the endpoint being "https://progenetix.org/beacon".
  • num_cores: An integer specifying the number of cores to use for parallel processing during Beacon v2 phenotypic/meta-data queries from multiple domains. Default is 1.

2 Retrieve biosamples information

2.1 Search by filters

Filters are a significant enhancement to the Beacon query API, providing a mechanism for specifying rules to select records based on their field values. To learn more about how to utilize filters in Progenetix, please refer to the documentation.

The following example demonstrates how to access all available filters in Progenetix:

all_filters <- pgxLoader(type="filtering_terms")
head(all_filters)
#>                           id                      label         type scopes
#> 1 labelSeg-based calibration labelSeg-based calibration alphanumeric     NA
#> 2                NCIT:C28076    Disease Grade Qualifier ontologyTerm     NA
#> 3                NCIT:C18000           Histologic Grade ontologyTerm     NA
#> 4                NCIT:C14158                 High Grade ontologyTerm     NA
#> 5                NCIT:C14161                  Low Grade ontologyTerm     NA
#> 6                NCIT:C14167      Poorly Differentiated ontologyTerm     NA

If you’re interested in filters related to a specific disease or phenotype, you can use the filter_pattern argument to narrow down the list. For example, to search for filters related to retinoblastoma:

query_filter <- pgxLoader(type="filtering_terms",filter_pattern="retinoblastoma")
query_filter
#>                id                     label         type scopes
#> 1      NCIT:C7541            Retinoblastoma ontologyTerm     NA
#> 2      NCIT:C8713  Bilateral Retinoblastoma ontologyTerm     NA
#> 3      NCIT:C8714 Unilateral Retinoblastoma ontologyTerm     NA
#> 4 pgx:icdom-95103       Retinoblastoma, NOS ontologyTerm     NA

To retrieve biosamples associated with a specific disease, use appropriate filter terms. In this example, we use an NCIt code corresponding to retinoblastoma (NCIT:C7541):

biosamples <- pgxLoader(type="biosamples", filters = "NCIT:C7541")
# data looks like this
biosamples[1:5,]
#>     biosample_id   individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-m3io5l34 pgxind-m3io5l34         EFO:0009656      neoplastic sample
#> 2 pgxbs-m84dcs0h pgxind-m84d8fb8         EFO:0010942   primary tumor sample
#> 3 pgxbs-m84df7m9 pgxind-m84dagjh         EFO:0010942   primary tumor sample
#> 4 pgxbs-kftvhcno pgxind-kftx39l9         EFO:0009656      neoplastic sample
#> 5 pgxbs-kftvhejo pgxind-kftx3bxo         EFO:0009656      neoplastic sample
#>   sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1           OBI:0001479   specimen from organism                NCIT:C7541
#> 2           OBI:0001479   specimen from organism                NCIT:C7541
#> 3           OBI:0001479   specimen from organism                NCIT:C7541
#> 4           OBI:0001479   specimen from organism                NCIT:C7541
#> 5           OBI:0001479   specimen from organism                NCIT:C7541
#>   histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1               Retinoblastoma    UBERON:0000966               retina
#> 2               Retinoblastoma    UBERON:0000966               retina
#> 3               Retinoblastoma    UBERON:0000966               retina
#> 4               Retinoblastoma    UBERON:0000966               retina
#> 5               Retinoblastoma    UBERON:0000966               retina
#>   pathological_stage_id pathological_stage_label tnm tumor_grade    age_iso
#> 1           NCIT:C92207            Stage Unknown  NA          NA       <NA>
#> 2                  <NA>                     <NA>  NA          NA P17Y12M30D
#> 3                  <NA>                     <NA>  NA          NA P17Y12M30D
#> 4           NCIT:C92207            Stage Unknown  NA          NA       <NA>
#> 5           NCIT:C92207            Stage Unknown  NA          NA       <NA>
#>   info                       notes icdo_morphology_id icdo_morphology_label
#> 1   NA              Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS
#> 2   NA              Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS
#> 3   NA              Retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS
#> 4   NA Retinoblastoma [4.3 months]    pgx:icdom-95103   Retinoblastoma, NOS
#> 5   NA              retinoblastoma    pgx:icdom-95103   Retinoblastoma, NOS
#>   icdo_topography_id icdo_topography_label
#> 1    pgx:icdot-C69.2                Retina
#> 2    pgx:icdot-C69.2                Retina
#> 3    pgx:icdot-C69.2                Retina
#> 4    pgx:icdot-C69.2                Retina
#> 5    pgx:icdot-C69.2                Retina
#>                                                                                                                                    external_references_description
#> 1 Francis et al. Cancers 2021,Targeted sequencing of 83 Retinoblastoma tumor-normal pairs via MSK-IMPACT. Genomic data provided is limited to somatic alterations.
#> 2                                                                                                                                                             <NA>
#> 3                                                                                                                                                             <NA>
#> 4                                                                 Herzog S, Lohmann DR et al. (2001): Marked differences in unilateral isolated retinoblastomas...
#> 5                                                                      Mairal A, Pinglier E et al. (2000): Detection of chromosome imbalances in retinoblastoma...
#>                      external_references_id
#> 1 pubmed:33466343,cbioportal:rbl_mskcc_2020
#> 2                                      <NA>
#> 3                                      <NA>
#> 4                           pubmed:11281459
#> 5                           pubmed:10862045
#>                                                                           external_references_reference
#> 1 https://europepmc.org/article/MED/33466343,https://www.cbioportal.org/study/summary?id=rbl_mskcc_2020
#> 2                                                                                                  <NA>
#> 3                                                                                                  <NA>
#> 4                                                            https://europepmc.org/article/MED/11281459
#> 5                                                            https://europepmc.org/article/MED/10862045
#>   analysis_info                              cohorts_id
#> 1            NA cbioportal:rbl_mskcc_2020,PMID:33466343
#> 2            NA   pgx:cohort-GENIE-MSK,pgx:cohort-GENIE
#> 3            NA   pgx:cohort-GENIE-MSK,pgx:cohort-GENIE
#> 4            NA               pgx:cohort-2021progenetix
#> 5            NA               pgx:cohort-2021progenetix
#>                                                                                                                                                      cohorts_label
#> 1 Targeted sequencing of 83 Retinoblastoma tumor-normal pairs via MSK-IMPACT. Genomic data provided is limited to somatic alterations.,Francis et al. Cancers 2021
#> 2                                                                                 GENIE samples, Memorial Sloan Kettering Cancer Center,AACR GENIE project samples
#> 3                                                                                 GENIE samples, Memorial Sloan Kettering Cancer Center,AACR GENIE project samples
#> 4                                                                                                                                Version at Progenetix Update 2021
#> 5                                                                                                                                Version at Progenetix Update 2021
#>   geo_location                    updated pathological_stage
#> 1           NA 2025-04-07T11:07:20.658121                 NA
#> 2           NA 2025-06-12T13:43:30.242820                 NA
#> 3           NA 2025-06-12T13:44:38.842689                 NA
#> 4           NA 2020-09-10 17:44:41.315000                 NA
#> 5           NA 2020-09-10 17:44:43.375000                 NA
#>   external_references geo_location_geometry_coordinates
#> 1                  NA                              <NA>
#> 2                  NA                      -74.01,40.71
#> 3                  NA                      -74.01,40.71
#> 4                  NA                        8.77,50.81
#> 5                  NA                        2.35,48.85
#>   geo_location_geometry_type geo_location_properties_iso3166alpha2
#> 1                       <NA>                                  <NA>
#> 2                      Point                                    US
#> 3                      Point                                    US
#> 4                      Point                                    DE
#> 5                      Point                                    FR
#>   geo_location_properties_iso3166alpha3 geo_location_properties_city
#> 1                                  <NA>                         <NA>
#> 2                                   USA                New York City
#> 3                                   USA                New York City
#> 4                                   DEU          Marburg An Der Lahn
#> 5                                   FRA                        Paris
#>   geo_location_properties_continent geo_location_properties_country
#> 1                              <NA>                            <NA>
#> 2                     North America        United States of America
#> 3                     North America        United States of America
#> 4                            Europe                         Germany
#> 5                            Europe                          France
#>   geo_location_properties_geoprov_id geo_location_type
#> 1                               <NA>              <NA>
#> 2          newyorkcity::unitedstates           Feature
#> 3          newyorkcity::unitedstates           Feature
#> 4          marburganderlahn::germany           Feature
#> 5                      paris::france           Feature
#>   analysis_info_experiment_id analysis_info_platform_id analysis_info_series_id
#> 1                        <NA>                      <NA>                    <NA>
#> 2                        <NA>                      <NA>                    <NA>
#> 3                        <NA>                      <NA>                    <NA>
#> 4                        <NA>                      <NA>                    <NA>
#> 5                        <NA>                      <NA>                    <NA>

The data contains many columns representing different aspects of sample information.

2.2 Search by biosample id and individual id

In the Beacon v2 specification, biosample id and individual id are unique identifiers for biosamples and their corresponding individuals, respectively. These identifiers can be obtained through metadata searches using filters as described above or by querying the Progenetix search interface, which provides access to the IDs used in the Progenetix database.

biosamples_2 <- pgxLoader(type="biosamples", biosample_id = "pgxbs-kftvki7h",individual_id = "pgxind-kftx6ltu")

biosamples_2
#>     biosample_id   individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-kftvki7h pgxind-kftx6ltd         EFO:0009656      neoplastic sample
#> 2 pgxbs-kftvki7v pgxind-kftx6ltu         EFO:0009656      neoplastic sample
#>   sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1           OBI:0001479   specimen from organism                NCIT:C3512
#> 2           OBI:0001479   specimen from organism                NCIT:C3512
#>   histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1          Lung Adenocarcinoma    UBERON:0002048                 lung
#> 2          Lung Adenocarcinoma    UBERON:0002048                 lung
#>   pathological_stage_id pathological_stage_label
#> 1           NCIT:C27976                 Stage Ib
#> 2           NCIT:C27977               Stage IIIa
#>                                tnm_id
#> 1 NCIT:C48706,NCIT:C48714,NCIT:C48724
#> 2 NCIT:C48706,NCIT:C48714,NCIT:C48728
#>                                            tnm_label tumor_grade age_iso info
#> 1 N1 Stage Finding,N3 Stage Finding,T2 Stage Finding          NA    P56Y   NA
#> 2 N1 Stage Finding,N3 Stage Finding,T3 Stage Finding          NA    P75Y   NA
#>                   notes icdo_morphology_id icdo_morphology_label
#> 1 adenocarcinoma [lung]    pgx:icdom-81403   Adenocarcinoma, NOS
#> 2 adenocarcinoma [lung]    pgx:icdom-81403   Adenocarcinoma, NOS
#>   icdo_topography_id icdo_topography_label
#> 1    pgx:icdot-C34.9             Lung, NOS
#> 2    pgx:icdot-C34.9             Lung, NOS
#>                                                     external_references_description
#> 1 Kang JU, Koo SH et al. (2009): Identification of novel candidate target genes,...
#> 2 Kang JU, Koo SH et al. (2009): Identification of novel candidate target genes,...
#>   external_references_id              external_references_reference
#> 1        pubmed:19607727 https://europepmc.org/article/MED/19607727
#> 2        pubmed:19607727 https://europepmc.org/article/MED/19607727
#>   analysis_info_experiment_id analysis_info_platform_id analysis_info_series_id
#> 1               geo:GSM417055               geo:GPL8690            geo:GSE16597
#> 2               geo:GSM417063               geo:GPL8690            geo:GSE16597
#>                                                                              cohorts_id
#> 1 pgx:cohort-arraymap,pgx:cohort-2021progenetix,pgx:cohort-carriocordo2021heterogeneity
#> 2                                         pgx:cohort-arraymap,pgx:cohort-2021progenetix
#>                                                                                                                  cohorts_label
#> 1 arrayMap collection,Version at Progenetix Update 2021,Carrio-Cordo and Baudis - Genomic Heterogeneity in Cancer Types (2021)
#> 2                                                                        arrayMap collection,Version at Progenetix Update 2021
#>   geo_location_geometry_coordinates geo_location_geometry_type
#> 1                      -74.01,40.71                      Point
#> 2                      -74.01,40.71                      Point
#>   geo_location_properties_iso3166alpha2 geo_location_properties_iso3166alpha3
#> 1                                    US                                   USA
#> 2                                    US                                   USA
#>   geo_location_properties_city geo_location_properties_continent
#> 1                New York City                     North America
#> 2                New York City                     North America
#>   geo_location_properties_country geo_location_properties_geoprov_id
#> 1        United States of America          newyorkcity::unitedstates
#> 2        United States of America          newyorkcity::unitedstates
#>   geo_location_type                    updated
#> 1           Feature 2020-09-10 17:46:45.105000
#> 2           Feature 2020-09-10 17:46:45.115000

It’s also possible to query by a combination of filters, biosample id, and individual id.

2.3 Access a subset of samples

By default, it returns all related samples (limit=0). You can access a subset of them via the parameter limit and skip. For example, if you want to access the first 10 samples , you can set limit = 10, skip = 0.

biosamples_3 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",skip=0, limit = 10)
# Dimension: Number of samples * features
print(dim(biosamples))
#> [1] 336  43
print(dim(biosamples_3))
#> [1] 10 40

2.4 Parameter codematches use

Some filters, such as NCIt codes, are hierarchical. As a result, retrieved samples may include not only the specified filters but also their child terms.

unique(biosamples$histological_diagnosis_id)
#> [1] "NCIT:C7541" "NCIT:C8714" "NCIT:C8713"

Setting codematches as TRUE allows this function to only return biosamples that exactly match the specified filter, excluding child terms.

biosamples_4 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",codematches = TRUE)
unique(biosamples_4$histological_diagnosis_id)
#> [1] "NCIT:C7541"

3 Retrieve individuals information

If you want to query details of individuals (e.g. clinical data) where the samples of interest come from, set the parameter type to “individuals” and follow the same steps as above.

individuals <- pgxLoader(type="individuals",individual_id = "pgxind-kftx26ml",filters="NCIT:C7541")
# data looks like this
tail(individuals,2)
#>       individual_id      sex_id sex_label age_iso histological_diagnosis_id
#> 328 pgxind-kftx37f7 NCIT:C17998   unknown    <NA>                      <NA>
#> 329 pgxind-kftx26ml NCIT:C20197      male    <NA>                NCIT:C3493
#>     histological_diagnosis_label followup_time followup_state_id
#> 328                         <NA>          <NA>              <NA>
#> 329 Lung Squamous Cell Carcinoma          <NA>       EFO:0030039
#>     followup_state_label                        diseases_notes
#> 328                 <NA> bilateral retinoblastoma [hereditary]
#> 329   no followup status                                  <NA>
#>                      info                    updated info_legacy_ids
#> 328  PGX_IND_RB-biuni-493 2018-09-26 09:51:36.759000            <NA>
#> 329 PGX_IND_AdSqLu-bjo-01 2025-07-11T16:57:08.312131            <NA>
#>     info_provenance
#> 328            <NA>
#> 329            <NA>

4 Retrieve analyses information

If you want to know more details about data analyses, set the parameter type to “analyses”. The other steps are the same, except the parameter codematches is not available because analyses data do not include filter information, even though it can be searched by filters.

analyses <- pgxLoader(type="analyses",biosample_id = c("pgxbs-kftvik5i","pgxbs-kftvik96"))

analyses
#>      analysis_id   biosample_id   individual_id calling_pipeline analysis_info
#> 1 pgxcs-kftw8qme pgxbs-kftvik5i pgxind-kftx4963       progenetix            NA
#> 2 pgxcs-kftw8rrh pgxbs-kftvik96 pgxind-kftx49ao       progenetix            NA
#>   platform_id                            platform_label
#> 1 geo:GPL2826             VUMC MACF human 30K oligo v31
#> 2 geo:GPL3960 MPIMG Homo sapiens 44K aCGH3_MPIMG_BERLIN
#>                      updated
#> 1 2025-07-13T18:28:42.839469
#> 2 2025-07-13T18:28:43.540286

5 Retrieve the number of results for a specific filter

To retrieve the number of results for a specific filter in Progenetix, set the type parameter to "counts". You can query different Beacon v2 resources by setting the domain and entry_point parameters accordingly.

pgxLoader(type="counts",filters = "NCIT:C7541")
#>       filter      entity count
#> 1 NCIT:C7541 individuals   328
#> 2 NCIT:C7541  biosamples   336
#> 3 NCIT:C7541    analyses   356

6 Query from multiple data resources

You can query data from multiple resources via the Beacon v2 API by setting the domain and entry_point parameters accordingly. To speed up the process, use the num_cores parameter to enable parallel processing across different domains. For resources that only support http (e.g., local or internal network instances), set use_https = FALSE to avoid connection issues.

record_counts <- pgxLoader(type="counts",filters = "NCIT:C9245",domain=c("progenetix.org","cancercelllines.org"), entry_point=c("beacon","beacon"))

record_counts
#> $progenetix.org
#>       filter      entity count
#> 1 NCIT:C9245 individuals  8267
#> 2 NCIT:C9245  biosamples  9862
#> 3 NCIT:C9245    analyses 12001
#> 
#> $cancercelllines.org
#>       filter      entity count
#> 1 NCIT:C9245 individuals    42
#> 2 NCIT:C9245  biosamples  1005
#> 3 NCIT:C9245    analyses   929

7 Visualization of survival data

Suppose you want to investigate whether there are survival differences associated with a particular disease, for example, between younger and older patients, or based on other variables. You can query and visualize the relevant information using the pgxMetaplot function.

7.1 pgxMetaplot function

This function generates a survival plot using metadata of individuals obtained by the pgxLoader function.

The parameters of this function:

  • data: The data frame returned by the pgxLoader function, containing survival data for individuals. The survival state is represented by Experimental Factor Ontology in the “followup_state_id” column, and the survival time is represented in ISO 8601 duration format in the “followup_time” column.
  • group_id: A string specifying which column is used for grouping in the Kaplan-Meier plot.
  • condition: A string for splitting individuals into younger and older groups, following the ISO 8601 duration format. Only used if group_id is “age_iso”.
  • return_data: A logical value determining whether to return the metadata used for plotting. Default is FALSE.
  • ...: Other parameters relevant to KM plot. These include pval, pval.coord, pval.method, conf.int, linetype, and palette (see ggsurvplot function from survminer package)

7.1.1 Example usage

# query metadata of individuals with lung adenocarcinoma
luad_inds <- pgxLoader(type="individuals",filters="NCIT:C3512")
# use 70 years old as the splitting condition
pgxMetaplot(data=luad_inds, group_id="age_iso", condition="P70Y", pval=TRUE)

It’s noted that not all individuals have available survival data. If you set return_data to TRUE, the function will return the metadata of individuals used for the plot.

8 Session Info

#> R version 4.5.1 (2025-06-13)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/liblapack.so.3;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] future_1.67.0    pgxRpi_1.5.5     BiocStyle_2.37.1
#> 
#> loaded via a namespace (and not attached):
#>  [1] gtable_0.3.6        xfun_0.52           bslib_0.9.0        
#>  [4] ggplot2_3.5.2       rstatix_0.7.2       lattice_0.22-7     
#>  [7] vctrs_0.6.5         tools_4.5.1         generics_0.1.4     
#> [10] curl_6.4.0          parallel_4.5.1      tibble_3.3.0       
#> [13] pkgconfig_2.0.3     Matrix_1.7-3        data.table_1.17.8  
#> [16] RColorBrewer_1.1-3  lifecycle_1.0.4     compiler_4.5.1     
#> [19] farver_2.1.2        tinytex_0.57        codetools_0.2-20   
#> [22] carData_3.0-5       htmltools_0.5.8.1   sass_0.4.10        
#> [25] yaml_2.3.10         Formula_1.2-5       pillar_1.11.0      
#> [28] car_3.1-3           ggpubr_0.6.1        jquerylib_0.1.4    
#> [31] tidyr_1.3.1         cachem_1.1.0        survminer_0.5.0    
#> [34] magick_2.8.7        abind_1.4-8         km.ci_0.5-6        
#> [37] parallelly_1.45.1   tidyselect_1.2.1    digest_0.6.37      
#> [40] dplyr_1.1.4         purrr_1.1.0         bookdown_0.43      
#> [43] listenv_0.9.1       labeling_0.4.3      splines_4.5.1      
#> [46] fastmap_1.2.0       grid_4.5.1          cli_3.6.5          
#> [49] magrittr_2.0.3      dichromat_2.0-0.1   survival_3.8-3     
#> [52] broom_1.0.9         future.apply_1.20.0 withr_3.0.2        
#> [55] scales_1.4.0        backports_1.5.0     lubridate_1.9.4    
#> [58] timechange_0.3.0    rmarkdown_2.29      httr_1.4.7         
#> [61] globals_0.18.0      gridExtra_2.3       ggsignif_0.6.4     
#> [64] zoo_1.8-14          evaluate_1.0.4      knitr_1.50         
#> [67] KMsurv_0.1-6        survMisc_0.5.6      rlang_1.1.6        
#> [70] Rcpp_1.1.0          xtable_1.8-4        glue_1.8.0         
#> [73] BiocManager_1.30.26 attempt_0.3.1       jsonlite_2.0.0     
#> [76] R6_2.6.1