SynExtend
is a package of tools for working with objects of class Synteny
built from the package DECIPHER
’s FindSynteny()
function.
Synteny maps provide a powerful tool for quantifying and visualizing where pairs of genomes share order. Typically these maps are built from predictions of orthologous pairs, where groups of pairs that provide contiguous and sequential blocks in their respective genomes are deemed a ‘syntenic block’. That designation of synteny can then used to further interrogate the predicted orthologs themselves, or query topics like genomic rearrangements or ancestor genome reconstruction.
FindSynteny
takes a different approach, finding exactly matched shared k-mers and determining where shared k-mers, or blocks of proximate shared k-mers are significant. Combining the information generated by FindSynteny
with locations of genomic features allows us to simply mark where features are linked by syntenic k-mers. These linked features represent potential orthologous pairs, and can be easily evaluated on the basis of the k-mers that they share, or alignment.
Currently SynExtend
contains one set of functions for performig orthology predictions, as well as a rearrangement estimation function that is currently under construction.
SynExtend
in R by running the following commands:if (!requireNamespace("BiocManager",
quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("SynExtend")
Using the FindSynteny
function in DECIPHER
builds an object of class Synteny
. In this tutorial, a prebuilt DECIPHER
database is used. For database construction see ?Seqs2DB
in DECIPHER
. This example starts with a database containing three endosymbiont genomes that were chosen to keep package data to a minimum.
library(SynExtend)
## Loading required package: DECIPHER
## Loading required package: Biostrings
## Loading required package: BiocGenerics
## Loading required package: generics
##
## Attaching package: 'generics'
## The following objects are masked from 'package:base':
##
## as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
## setequal, union
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
## as.data.frame, basename, cbind, colnames, dirname, do.call,
## duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
## mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
## unsplit, which.max, which.min
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:utils':
##
## findMatches
## The following objects are masked from 'package:base':
##
## I, expand.grid, unname
## Loading required package: IRanges
## Loading required package: XVector
## Loading required package: GenomeInfoDb
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
##
## strsplit
##
## Attaching package: 'SynExtend'
## The following object is masked from 'package:stats':
##
## dendrapply
DBPATH <- system.file("extdata",
"Endosymbionts_v05a.sqlite",
package = "SynExtend")
Syn <- FindSynteny(dbFile = DBPATH)
## ================================================================================
##
## Time difference of 20.67 secs
Synteny maps represent where genomes share order. Simply printing a synteny object to the console displays a gross level view of the data inside. Objects of class Synteny
can also be plotted to provide clear visual representations of the data inside. The genomes used in this example are distantly related and fairly dissimilar.
Syn
## 1 2 3 4
## 1 1 seq 61% hits 9.7% hits 93% hits
## 2 51 blocks 1 seq 7.4% hits 94% hits
## 3 105 blocks 79 blocks 1 seq 9.7% hits
## 4 2 blocks 2 blocks 100 blocks 1 seq
pairs(Syn)
Data present inside objects of class Synteny
can also be accessed relatively easily. The object itself is functionally a matrix of lists, with data describing exactly matched k-mers present in the upper triangle, and data describing blocks of chained k-mers in the lower triangle. For more information see ?FindSynteny
in the package DECIPHER
.
print(head(Syn[[1, 2]]))
## index1 index2 strand width start1 start2 frame1 frame2
## [1,] 1 1 1 271 372826 791111 0 0
## [2,] 1 1 1 363 373097 790839 0 0
## [3,] 1 1 1 1279 373461 790476 0 0
## [4,] 1 1 1 4 374740 789197 3 3
## [5,] 1 1 1 197 374745 789193 0 0
## [6,] 1 1 1 3 374943 788996 3 1
print(head(Syn[[2, 1]]))
## index1 index2 strand score start1 start2 end1 end2 first_hit last_hit
## [1,] 1 1 1 531473 372826 373207 790687 791111 1 302
## [2,] 1 1 1 8699 190767 174382 198794 182409 303 304
## [3,] 1 1 1 5263 206635 161395 211781 166540 305 306
## [4,] 1 1 1 4872 35989 332774 40464 337249 307 307
## [5,] 1 1 1 4676 143082 225928 147245 230091 308 308
## [6,] 1 1 1 4225 67014 302308 70919 306213 309 310
The above printed objects show the data for the comparison between the first and second genome in our database.
To take advantage of these synteny maps, we can then overlay the gene calls for each genome present on top of our map.
Next, GFF annotations for the associated genomes are parsed to provide gene calls in a use-able format. GFFs are not the only possible source of appropriate gene calls, but they are the source that was used during package construction and testing. Parsed GFFs can be constructed with gffToDataFrame
, for full functionality, or GFFs can be imported via rtracklater::import()
for limited functionality. GeneCalls for both the PairSummaries
and NucleotideOverlap
functions must be named list, and those names must match dimnames(Syn)[[1]]
.
# generating genecalls with local data:
GC <- gffToDataFrame(GFF = system.file("extdata",
"GCF_023585825.1_ASM2358582v1_genomic.gff.gz",
package = "SynExtend"),
Verbose = TRUE)
## ================================================================================
## Time difference of 7.459817 secs
# in an effort to be space conscious, not all original gffs are kept within this package
GeneCalls <- get(data("Endosymbionts_GeneCalls", package = "SynExtend"))
SynExtend
’s gffToDataFrame
function will directly import gff files into a usable format, and includes other extracted information.
print(head(GeneCalls[[1]]))
## DataFrame with 6 rows and 11 columns
## Index Strand Start Stop Type ID
## <integer> <integer> <integer> <integer> <character> <character>
## 1 1 0 170 493 gene gene-M9394_RS00005
## 2 1 0 574 1935 gene gene-M9394_RS00010
## 3 1 0 1995 2522 gene gene-M9394_RS00015
## 4 1 0 2581 3321 gene gene-M9394_RS00020
## 5 1 1 4383 5396 gene gene-M9394_RS00025
## 6 1 0 5682 6377 gene gene-M9394_RS00030
## Range Product Coding Translation_Table
## <IRangesList> <character> <logical> <character>
## 1 170-493 cell envelope integr.. TRUE 11
## 2 574-1935 Tol-Pal system beta .. TRUE 11
## 3 1995-2522 peptidoglycan-associ.. TRUE 11
## 4 2581-3321 tol-pal system prote.. TRUE 11
## 5 4383-5396 6-phosphogluconolact.. TRUE 11
## 6 5682-6377 2%2C3-diphosphoglyce.. TRUE 11
## Contig
## <character>
## 1 NZ_CP097751.1
## 2 NZ_CP097751.1
## 3 NZ_CP097751.1
## 4 NZ_CP097751.1
## 5 NZ_CP097751.1
## 6 NZ_CP097751.1
Raw GFF imports are also acceptable, but prevent alignments in amino acid space with PairSummaries()
.
X01 <- rtracklayer::import(system.file("extdata",
"GCF_023585825.1_ASM2358582v1_genomic.gff.gz",
package = "SynExtend"))
class(X01)
print(X01)
SynExtend
’s primary functions provide a way to identify where pairs of genes are explicitly linked by syntenic hits, and then summarize those links. The first step is just identifying those links.
Links <- NucleotideOverlap(SyntenyObject = Syn,
GeneCalls = GeneCalls,
Verbose = TRUE)
##
## Reconciling genecalls.
## ================================================================================
## Finding connected features.
## ================================================================================
## Time difference of 0.5472124 secs
The Links
object generated by NucleotideOverlap is a raw representation of positions on the synteny map where shared k-mers link genes between paired genomes. As such, it is analagous in shape to objects of class Synteny
. This raw object is unlikely to be useful to most users, but has been left exposed to ensure that this data remains accessible should a user desire to have access to it.
class(Links)
## [1] "LinkedPairs"
print(Links)
## 1 2 3 4
## 1 1 Contig 438 Pairs 120 Pairs 711 Pairs
## 2 468 Kmers 1 Contig 81 Pairs 710 Pairs
## 3 272 Kmers 228 Kmers 1 Contig 108 Pairs
## 4 2634 Kmers 2605 Kmers 286 Kmers 1 Contig
This raw data can be processed to provide a straightforward summary of predicted pairs.
LinkedPairs1 <- PairSummaries(SyntenyLinks = Links,
DBPATH = DBPATH,
PIDs = FALSE,
Verbose = TRUE)
##
## Preparing overhead data.
## Overhead complete.
## Collecting pairs.
## ================================================================================
## Time difference of 3.030728 secs
The object LinkedPairs1
is a data.frame where each row is populated by information about a predicted orthologous pair. By default PairSummaries
uses a simple model to determine whether the k-mers that link a pair of genes are likely to provide an erroneous link. When set to Model = "Global"
, is is simply a prediction of whether the involved nucleotides are likely to describe a pair of genomic features whose alignment would result in a PID that falls within a random distribution. This model is effective if somewhat permissive, but is significantly faster than performing many pairwise alignments.
print(head(LinkedPairs1))
## p1 p2 ExactMatch Consensus TotalKmers MaxKmer p1FeatureLength
## 1 1_1_1 2_1_310 324 0.7727273 1 324 324
## 2 1_1_2 2_1_309 1362 1.0000000 1 1362 1362
## 3 1_1_3 2_1_308 528 1.0000000 1 528 528
## 4 1_1_4 2_1_307 738 1.0000000 2 655 741
## 5 1_1_7 2_1_304 711 1.0000000 1 711 711
## 6 1_1_8 2_1_303 1077 1.0000000 1 1077 1077
## p2FeatureLength Adjacent TetDist PIDType PredictedPID
## 1 594 1 0.043957492 AA 0.4548953
## 2 1362 2 0.002943341 AA 0.9999764
## 3 528 2 0.005387480 AA 0.9982457
## 4 741 1 0.007901019 AA 0.9984988
## 5 711 1 0.003994954 AA 0.9991435
## 6 1077 1 0.004561433 AA 0.9998671
PairSummaries includes arguments that allow for aligning all pairs that are predicted, via PIDs = TRUE
, while IgnoreDefaultStringSet = FALSE
indicates that alignments should be performed in nucleotide or amino acid space as is appropriate for the linked sequences. Setting IgnoreDefaultStringSet = TRUE
will force all alignments into nucleotide space.
As of SynExtend v 1.3.13, the functions ExtractBy
and DisjointSet
have been added to provide users with direct tools to work with PairSummaries
objects.
SingleLinkageClusters <- DisjointSet(Pairs = LinkedPairs1,
Verbose = TRUE)
##
## Assigning initial root:
## ================================================================================
##
## Time difference of 0.01705766 secs
##
## Assigning final root:
## ================================================================================
##
## Time difference of 0.01579714 secs
##
## Assigning single linkage clusters.
## Assignments complete.
##
## Time difference of 0.03792882 secs
# extract the first 10 clusters
Sets <- ExtractBy(x = LinkedPairs1,
y = DBPATH,
z = SingleLinkageClusters[1:10],
Verbose = TRUE)
##
## Extracting Sequences:
## ================================================================================
##
## Arranging Sequences:
## ================================================================================
##
## Time difference of 0.3201654 secs
head(Sets)
## [[1]]
## DNAStringSet object of length 5:
## width seq names
## [1] 324 TTGACAACAAAAAAAAATGATAA...TATTAAATTTTTCTCCTCAATAA 1_1_1
## [2] 411 GTGATCGTTTCTTTGTTGCTATA...AAAAGAAAAATCAAGATCAATAA 1_1_663
## [3] 135 TTGCCCAACACCCCTAACAAGAA...ATCAGGTTGCCCAACACCCCTAA 1_1_664
## [4] 594 TTGGCAGGACCAACGTTGACCAA...TATTAAATTTTTCTCCTCAATAA 2_1_310
## [5] 1146 ATGATATCAATCATTGTACATGT...TATTAAATTTTTCTCCTCAATAA 4_1_347
##
## [[2]]
## DNAStringSet object of length 3:
## width seq names
## [1] 1362 ATGTATTTAATAATTAGAAAAAC...GGTCCCCATTACATTTAGAATAA 1_1_2
## [2] 1362 ATGTATTTAATAATTAGAAAAAC...GGTCCCCATTACATTTAGAATAA 2_1_309
## [3] 1296 ATGTTAATTATATTTTTATGGAA...GGTCTCCATTACATTTAGAATAA 4_1_348
##
## [[3]]
## DNAStringSet object of length 3:
## width seq names
## [1] 528 ATGAAACCAAATAATTTTTTTAA...GTGTTGTATTAATATATAAATAA 1_1_3
## [2] 528 ATGAAACCAAATAATTTTTTTAA...GTGTTGTATTAATATATAAATAA 2_1_308
## [3] 528 ATGAAACCAAACAATTTTTTTAA...GCGTTGTATTAATATATAAATAA 4_1_349
##
## [[4]]
## DNAStringSet object of length 3:
## width seq names
## [1] 741 ATGATGATATATTTTAATATTAC...AACGTCTAATACACCTATCATAA 1_1_4
## [2] 741 ATGATGATATATTTTAATATTAC...AACGTCTAATACACCTATCATAA 2_1_307
## [3] 738 ATGATGATATATTTTAATATTAC...AACGTCTAATACACCTATCATAA 4_1_350
##
## [[5]]
## DNAStringSet object of length 3:
## width seq names
## [1] 711 ATGGATCAATTTCCCCGTTTTCA...GTATTTTTGGAAATCGGCGTTAA 1_1_7
## [2] 711 ATGGATCAATTTCCCCGTTTTCA...GTATTTTTGGAAATCGGCGTTAA 2_1_304
## [3] 711 ATGGATCAATTTCCCCGTTTTCA...GTATCTTTGGAAATCGCCGTTAA 4_1_353
##
## [[6]]
## DNAStringSet object of length 4:
## width seq names
## [1] 1077 ATGCAAATTGATTGTGGTATTAT...TGAAGTTTTTATTTCAAATTTAG 1_1_8
## [2] 1077 ATGCAAATTGATTGTGGTATTAT...TGAAGTTTTTATTTCAAATTTAG 2_1_303
## [3] 1077 ATGCAAATTGATTGTGGTATTAT...TGAAGTTTTTATTTCAAATTTAG 4_1_354
## [4] 1092 ATGCTAAAAGCTGGAATTGTTGG...TGTTATTTAGATTTAATGTTTAA 3_1_1760
Session Info:
sessionInfo()
## R Under development (unstable) (2025-03-13 r87965)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] SynExtend_1.19.10 DECIPHER_3.3.5 Biostrings_2.75.4
## [4] GenomeInfoDb_1.43.4 XVector_0.47.2 IRanges_2.41.3
## [7] S4Vectors_0.45.4 BiocGenerics_0.53.6 generics_0.1.3
## [10] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] bit_4.6.0 jsonlite_2.0.0 compiler_4.6.0
## [4] BiocManager_1.30.25 crayon_1.5.3 Rcpp_1.0.14
## [7] tinytex_0.56 blob_1.2.4 magick_2.8.6
## [10] parallel_4.6.0 jquerylib_0.1.4 yaml_2.3.10
## [13] fastmap_1.2.0 R6_2.6.1 knitr_1.50
## [16] bookdown_0.42 GenomeInfoDbData_1.2.14 DBI_1.2.3
## [19] bslib_0.9.0 rlang_1.1.5 cachem_1.1.0
## [22] xfun_0.52 sass_0.4.9 bit64_4.6.0-1
## [25] RSQLite_2.3.9 memoise_2.0.1 cli_3.6.4
## [28] magrittr_2.0.3 digest_0.6.37 lifecycle_1.0.4
## [31] vctrs_0.6.5 evaluate_1.0.3 rmarkdown_2.29
## [34] httr_1.4.7 pkgconfig_2.0.3 tools_4.6.0
## [37] htmltools_0.5.8.1 UCSC.utils_1.3.1