## ----setup, include = FALSE--------------------------------------------------- knitr::knit_hooks$set(optipng = knitr::hook_optipng) options(rmarkdown.html_vignette.check_title = FALSE) ## ----load-libs, message = FALSE, warning = FALSE, results = FALSE------------ library(BulkSignalR) library(SingleCellSignalR) ## ----code1 , eval=TRUE,cache=FALSE-------------------------------------------- data(example_dataset,package='SingleCellSignalR') mat <- log1p(data.matrix(example_dataset[,-1]))/log(2) rownames(mat) <- example_dataset[[1]] rme <- rowMeans(mat) mmat <- mat[rme>0.05,] d <- dist(t(mmat)) h <- hclust(d, method="ward.D") clusters <- paste0("pop_", cutree(h, 5)) # SCSRNoNet -> LRscore based approach scsrnn <- SCSRNoNet(mat,normalize=FALSE,method="log-only", min.count=1,prop=0.001, log.transformed=TRUE,populations=clusters) scsrnn <- performInferences(scsrnn,verbose=TRUE, min.logFC=1e-10,max.pval=1,min.LR.score=0.5) # SCSRNet -> DifferentialMode based approach scsrcn <- SCSRNet(mat,normalize=FALSE,method="log-only", min.count=1,prop=0.001, log.transformed=TRUE,populations=clusters) if(FALSE){ scsrcn <- performInferences(scsrcn, selected.populations = c("pop_1","pop_2","pop_3"), verbose=TRUE,rank.p=0.8, min.logFC=log2(1.01),max.pval=0.05) print("getAutocrines") inter1 <- getAutocrines(scsrcn, "pop_1") head(inter1) print("getParacrines") inter2 <- getParacrines(scsrcn, "pop_1","pop_2") head(inter2) # Visualisation cellNetBubblePlot(scsrcn) } ## ----session-info------------------------------------------------------------- sessionInfo()