## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # if (!requireNamespace("BiocManager")) # install.packages("BiocManager") # BiocManager::install("CBN2Path") ## ----------------------------------------------------------------------------- library(CBN2Path) ## ----include=FALSE------------------------------------------------------------ library(TCGAbiolinks) ## ----------------------------------------------------------------------------- # Obtaining the "TCGA-BLCA" data rawData <- getRawTCGAData("TCGA-BLCA") # Specifying the genes genes <- c("TP53","ARID1A","KDM6A","PIK3CA") # Generating the genotype matrix gMat <- generateTCGAMatrix(rawData, genes) ## ----------------------------------------------------------------------------- # The poset dag <- matrix(c(1, 1, 1, 4, 2, 3, 4, 3), 4, 2) # The genotype matrix: # gMat, which was generated using the generateTCGAMatrix function (see above). # Preparing input of the ct-cbn/h-cbn methods bc <- Spock$new( poset = dag, numMutations = 4, genotypeMatrix = gMat ) # Running the ct-cbn model resultsC <- ctcbnSingle(bc) ## ----fig.width=4.25, fig.height=4.25------------------------------------------ visualizeCBNModel(dag) ## ----------------------------------------------------------------------------- mlLambda <- resultsC$lambda logLikelihood <- resultsC$summary["Loglike"] ## ----------------------------------------------------------------------------- gMatMut <- genotypeMatrixMutator(gMat, 0.3, 0.2) ## ----------------------------------------------------------------------------- # The poset dag <- matrix(c(1, 1, 1, 4, 2, 3, 4, 3), 4, 2) # Preparing the inputs of the ct-cbn method bc <- Spock$new( poset = dag, numMutations = 4, genotypeMatrix = gMatMut ) # Running the ct-cbn model resultsCMut <- ctcbnSingle(bc) ## ----------------------------------------------------------------------------- examplePath <- getExamples()[1] bc <- Spock$new( poset = readPoset(examplePath)$sets, numMutations = readPoset(examplePath)$mutations, genotypeMatrix = readPattern(examplePath) ) resultsC2 <- ctcbnSingle(bc) ## ----------------------------------------------------------------------------- posets <- readRDS(system.file("extdata", "Posets.rds", package = "CBN2Path")) bc <- Spock$new( poset = posets, numMutations = 4, genotypeMatrix = gMat ) resultsC3 <- ctcbn(bc, nCores = 3) ## ----------------------------------------------------------------------------- logLik <- sapply(resultsC3, \(x) x$summary["Loglike"]) ## ----------------------------------------------------------------------------- indx <- which.max(logLik) mlPosetC <- posets[[indx]] ## ----fig.width=4.25, fig.height=4.25------------------------------------------ visualizeCBNModel(mlPosetC) ## ----------------------------------------------------------------------------- # The poset dag <- matrix(c(1, 1, 1, 4, 2, 3, 4, 3), 4, 2) # Preparing the inputs of the h-cbn method bc <- Spock$new( poset = dag, numMutations = 4, genotypeMatrix = gMat ) # Running the h-cbn model resultsH <- hcbnSingle(bc) ## ----------------------------------------------------------------------------- mlLambdaH <- resultsH$lambda logLikelihoodH <- resultsH$summary["Loglike"] ## ----------------------------------------------------------------------------- # The poset dag <- matrix(c(3, 3, 4, 4, 1, 2, 1, 2), 4, 2) # Preparing the inputs of the h-cbn method bc <- Spock$new( poset = dag, numMutations = 4, genotypeMatrix = gMatMut ) # Running the h-cbn model resultsHMut <- hcbnSingle(bc) ## ----------------------------------------------------------------------------- examplePath <- getExamples()[1] bc <- Spock$new( poset = readPoset(examplePath)$sets, numMutations = readPoset(examplePath)$mutations, genotypeMatrix = readPattern(examplePath) ) resultsH2 <- hcbnSingle(bc) ## ----------------------------------------------------------------------------- posets <- readRDS(system.file("extdata", "Posets.rds", package = "CBN2Path")) bc <- Spock$new( poset = posets, numMutations = 4, genotypeMatrix = gMat ) resultsH3 <- hcbn(bc, nCores = 3) ## ----------------------------------------------------------------------------- logLikH <- sapply(resultsH3, \(x) x$summary["Loglike"]) ## ----------------------------------------------------------------------------- indx <- which.max(logLikH) mlPosetH <- posets[[indx]] ## ----fig.width=4.25, fig.height=4.25------------------------------------------ visualizeCBNModel(mlPosetH) ## ----eval=FALSE--------------------------------------------------------------- # lambdaC <- as.numeric(resultsC2$lambda) # lambdaH <- as.numeric(resultsH2$lambda) # dagC <- resultsC2$poset$sets # dagH <- resultsH2$poset$sets # # probC <- pathProbCBN(dagC, lambdaC, 10) # probH <- pathProbCBN(dagH, lambdaH, 10) ## ----------------------------------------------------------------------------- probC1 <- pathProbQuartetCTCBN(gMat) probC2 <- pathProbQuartetCTCBN(gMatMut) probH1 <- pathProbQuartetHCBN(gMat) probH2 <- pathProbQuartetHCBN(gMatMut) ## ----------------------------------------------------------------------------- visualizeProbabilities(probC1) visualizeProbabilities(probC2) ## ----------------------------------------------------------------------------- visualizeProbabilities(probC2, geneNames = genes) ## ----------------------------------------------------------------------------- visualizeProbabilities(probH1) visualizeProbabilities(probH2) ## ----------------------------------------------------------------------------- jsdC <- jensenShannonDivergence(probC1, probC2) jsdH <- jensenShannonDivergence(probH1, probH2) jsdC jsdH ## ----------------------------------------------------------------------------- predC1 <- predictability(probC1, 4) predC2 <- predictability(probC2, 4) predC1 predC2 predC1 - predC2 ## ----------------------------------------------------------------------------- predH1 <- predictability(probH1, 4) predH2 <- predictability(probH2, 4) predH1 predH2 predH1 - predH2 ## ----------------------------------------------------------------------------- pathwayC1 <- pathwayCompatibilityQuartet(gMat) pathwayC2 <- pathwayCompatibilityQuartet(gMatMut) ## ----------------------------------------------------------------------------- rhoC1 <- cor(pathwayC1, probC1, method = "spearman") rhoC2 <- cor(pathwayC2, probC2, method = "spearman") rhoC1 rhoC2 rhoH1 <- cor(pathwayC1, probH1, method = "spearman") rhoH2 <- cor(pathwayC2, probH2, method = "spearman") rhoH1 rhoH2 ## ----------------------------------------------------------------------------- probR1 <- pathProbQuartetRCBN(gMat) probR2 <- pathProbQuartetRCBN(gMatMut) ## ----------------------------------------------------------------------------- visualizeProbabilities(probR1) visualizeProbabilities(probR2) ## ----------------------------------------------------------------------------- jsdR <- jensenShannonDivergence(probR1, probR2) jsdR ## ----------------------------------------------------------------------------- predR1 <- predictability(probR1, 4) predR2 <- predictability(probR2, 4) predR1 predR2 predR1 - predR2 ## ----------------------------------------------------------------------------- rhoR1 <- cor(pathwayC1, probR1, method = "spearman") rhoR2 <- cor(pathwayC2, probR2, method = "spearman") rhoR1 rhoR2 ## ----warning=FALSE, results='hide',eval=FALSE--------------------------------- # probB1 <- pathProbQuartetBCBN(gMat) # probB2 <- pathProbQuartetBCBN(gMatMut) ## ----eval=FALSE--------------------------------------------------------------- # visualizeProbabilities(probB1) # visualizeProbabilities(probB2) ## ----eval=FALSE--------------------------------------------------------------- # jsdB <- jensenShannonDivergence(probB1, probB2) # jsdB ## ----eval=FALSE--------------------------------------------------------------- # predB1 <- predictability(probB1, 4) # predB2 <- predictability(probB2, 4) # predB1 # predB2 # predB1 - predB2 ## ----eval=FALSE--------------------------------------------------------------- # rhoB1 <- cor(pathwayC1, probB1, method = "spearman") # rhoB2 <- cor(pathwayC2, probB2, method = "spearman") # rhoB1 # rhoB2 ## ----------------------------------------------------------------------------- fitnessVector <- c(0, 0.1, 0.2, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0, 0.6, 0.4, 0.3, 0.2, 1) g <- generateMatrixGenotypes(4) ## ----------------------------------------------------------------------------- visualizeFitnessLandscape(fitnessVector) ## ----------------------------------------------------------------------------- probW <- pathProbSSWM(fitnessVector,4) ## ----------------------------------------------------------------------------- visualizeProbabilities(probW) ## ----fig.width=4.25, fig.height=4.25------------------------------------------ predW <- predictability(probW, 4) ## ----------------------------------------------------------------------------- sessionInfo()