We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di" "CD3(Cd112)Di"
## [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di" "IgD(Nd145)Di"
## [10] "CD79b(Nd146)Di" "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di" "IgM(Eu153)Di"
## [16] "Kappa(Sm154)Di" "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di" "Rag1(Dy164)Di"
## [22] "PreBCR(Ho165)Di" "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di" "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di" "pS6(Yb172)Di"
## [5] "cPARP(La139)Di" "pPLCg2(Pr141)Di" "pSrc(Nd144)Di" "Ki67(Sm152)Di"
## [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di" "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 161 529 693 584 554 680 165 722 252 836 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 161 726 262 20 554 692 541 98 524 775
## [2,] 529 754 763 770 313 416 669 643 817 828
## [3,] 693 176 964 25 546 448 467 200 38 651
## [4,] 584 567 554 775 116 401 692 889 821 199
## [5,] 554 86 820 148 207 889 244 933 694 332
## [6,] 680 14 125 136 691 724 548 256 659 78
## [7,] 165 64 868 368 694 107 795 262 965 193
## [8,] 722 515 739 163 19 848 616 942 58 418
## [9,] 252 585 634 603 901 335 574 615 228 857
## [10,] 836 230 367 531 427 264 314 200 391 212
## [11,] 434 66 292 18 630 334 516 125 40 556
## [12,] 111 518 531 394 793 836 157 264 361 610
## [13,] 400 456 559 193 663 652 672 84 105 948
## [14,] 691 449 125 714 79 334 689 78 924 198
## [15,] 601 538 872 498 391 626 604 618 732 764
## [16,] 663 775 888 145 107 174 133 443 889 97
## [17,] 222 719 43 861 371 706 829 183 310 774
## [18,] 630 361 909 556 266 110 904 283 292 35
## [19,] 418 163 848 722 60 670 739 515 8 507
## [20,] 98 726 358 338 982 524 287 161 554 967
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 3.03 3.64 3.63 2.37 2.91 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 3.025148 3.323617 3.388649 3.421620 3.473889 3.486982 3.613140 3.670150
## [2,] 3.642857 4.050647 4.135238 4.296608 4.339992 4.637186 4.975909 5.001013
## [3,] 3.626690 3.781224 3.921660 4.270507 4.324263 4.357121 4.374040 4.441968
## [4,] 2.374976 2.456418 2.506369 2.943577 3.006399 3.105921 3.153009 3.168570
## [5,] 2.913686 3.017727 3.070864 3.172605 3.205827 3.272177 3.280142 3.291697
## [6,] 3.217416 3.420631 3.694704 3.768833 3.773349 3.800538 3.847745 3.859671
## [7,] 2.696517 2.705975 2.815296 3.045004 3.275969 3.421595 3.466070 3.481313
## [8,] 3.211137 3.266432 3.639487 3.668870 3.928391 4.199958 4.530719 4.585742
## [9,] 3.471128 3.631353 3.834755 3.836526 3.913398 3.935926 3.950912 3.967010
## [10,] 3.374277 3.612151 3.625169 3.636588 3.757469 3.818075 3.822374 3.823425
## [11,] 4.022475 4.064084 4.185329 4.284669 4.365769 4.484508 4.586446 4.612879
## [12,] 3.244902 3.582281 3.696477 3.747924 3.855553 3.914378 3.944160 3.958140
## [13,] 4.241187 4.311942 4.365442 4.627651 4.629036 4.680737 4.760091 4.780920
## [14,] 2.676100 2.741691 2.970100 3.173130 3.184604 3.193548 3.231701 3.258761
## [15,] 2.480504 2.646200 2.787093 2.816422 2.861422 2.887437 2.955679 2.963617
## [16,] 4.011873 4.295945 4.306582 4.380067 4.491528 4.616279 4.631275 4.635294
## [17,] 2.902257 3.145769 3.178082 3.249180 3.362196 3.381648 3.386810 3.404567
## [18,] 3.325274 3.442563 3.453003 3.541359 3.553116 3.580820 3.628534 3.692994
## [19,] 2.554459 2.623359 2.955946 3.174172 3.475357 3.785996 3.889002 3.890587
## [20,] 2.718018 2.739598 2.864140 2.965590 3.106157 3.149070 3.185572 3.256762
## [,9] [,10]
## [1,] 3.706352 3.738727
## [2,] 5.425431 5.436872
## [3,] 4.448236 4.487402
## [4,] 3.199420 3.249657
## [5,] 3.358462 3.361166
## [6,] 3.870613 3.912247
## [7,] 3.509693 3.577555
## [8,] 4.593757 4.611769
## [9,] 4.033075 4.153947
## [10,] 3.840243 3.872869
## [11,] 4.613099 4.682071
## [12,] 4.029057 4.031206
## [13,] 4.895823 4.921965
## [14,] 3.263031 3.274972
## [15,] 2.971006 2.972881
## [16,] 4.675183 4.709642
## [17,] 3.447821 3.523685
## [18,] 3.700835 3.725202
## [19,] 3.928391 3.997474
## [20,] 3.268406 3.416803
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 × 34
## `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
## <dbl> <dbl> <dbl>
## 1 0.982 0.956 0.964
## 2 0.960 0.948 0.937
## 3 1 0.948 0.811
## 4 0.930 0.973 1
## 5 0.930 0.948 0.982
## 6 0.979 0.948 1
## 7 0.930 0.948 0.799
## 8 0.988 0.948 0.964
## 9 0.930 0.948 0.747
## 10 0.930 0.961 0.742
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹`pCREB(Yb176)Di.IL7.qvalue`,
## # ²`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
## <dbl> <dbl> <dbl> <dbl>
## 1 -0.0894 -0.309 -0.000283 0.253
## 2 -0.147 -0.355 0.160 -1.11
## 3 0.200 0.333 0.227 0.779
## 4 -0.0230 -0.197 -0.110 -0.901
## 5 -0.0638 -0.235 -0.265 -0.240
## 6 -0.114 -0.0571 -0.215 -0.887
## 7 0.592 0.446 0.877 -0.784
## 8 -0.414 -0.0421 -0.158 -0.888
## 9 -0.139 -0.0870 -0.0530 0.537
## 10 -0.257 -0.311 -0.447 -0.920
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## # `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## # `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## # `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## # `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## # `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.261 0.171 0.219 0.303 0.286 ...